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1 Introduction

Subsidies for residential solar panels disproportionately benefit high-income households.1

Means-tested subsidies are an increasingly popular way to to address this imbalance. As

of 2024, seven states have subsidy programs for residential solar which explicitly base eligi-

bility or subsidy amounts on household income.2 The scope and impact of these programs

are set to expand significantly with the 2023 launch of the U.S. Environmental Protec-

tion Agency’s Solar for All program, which awarded 7 billion dollars to fund low-income

solar programs, and the 2022 introduction of the Low-Income Communities Bonus Credit

Program, which offers federal tax credits for solar installations in low-income commu-

nities. However, despite the increasing importance of income-contingent solar subsidies

in US energy policy, no quantitative analysis exists on how to set these subsidies most

effectively.

This paper studies the equity and efficiency trade-offs associated with income-contingent

subsidies for residential solar. We derive sufficient statistics for the cost-effectiveness of

means-tested subsidies and estimate these sufficient statistics using border-discontinuity

regressions. We use these empirical estimates to identify parameters in our structural

model and then use our structural model to solve for the efficient income-contingent sub-

sidy schedules.3 We conclude that there are substantial equity and efficiency gains to

instituting federal means-tested subsidies for rooftop solar panels.

To motivate our reduced-form analysis, consider a government that uses income-

contingent subsidies to maximize solar production subject to a fiscal cost constraint. All

else equal, the government will optimally provide subsidies to income groups with many

additional households, that is, households who will be induced to install solar panels in

response to a small subsidy increase. On the other hand, the fiscal costs of providing

subsidies are increasing in the number of non-additional households: the households who

already choose to install solar panels absent the subsidy increase.4 We show analytically

that the ratio of the additional over non-additional households, as measured by the partial

elasticity of solar production with respect to subsidies, can be used as a sufficient statistic

for the cost-effectiveness of income-targeted subsidies. Specifically, we show that if this

partial elasticity is decreasing (increasing) in income, then cost-neutral increases in the

1See, e.g., Borenstein and Davis (2024).
2https://www.solarreviews.com/blog/free-solar-panels-for-low-income-families. Several

additional states also have community solar programs that target low-income households.
3Our main exercise is to solve for the income-contingent subsidies for rooftop solar which maximize

solar production subject to a government cost constraint. We refer to the subsidies which solve this
constrained maximization problem as the “efficient” subsidies. We avoid using the term “optimal” as the
planner does not aim to maximize welfare.

4“Additional” and “non-additional” agents are sometimes refereed to as “marginal” and “infra-
marginal” agents, respectively. See, e.g., Colas, Findeisen, and Sachs (2021).
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progressivity of the subsidy schedule will increase (decrease) total solar production.

We then empirically investigate how this partial elasticity varies across income lev-

els. We use the Deepsolar database (Yu et al., 2018), which applies a machine-learning

framework to satellite imagery across the contiguous US to measure the total residen-

tial solar panel area in each census tract, along with state-level subsidy data. Across a

wide range of specifications, including border-discontinuity regressions and specifications

that allow responsiveness to subsidies to vary nonparametrically in tract-level income,

we consistently find that low-income tracts have partial elasticities greater than those of

high-income tracts. Tracts with the median income level have a partial elasticity 15%

to 43% higher than tracts at the 90th percentile. These results are robust to a battery

of alternative specifications and suggest that means-tested subsidies could increase total

solar production without increasing fiscal costs.

We then turn to a quantitative model of residential solar demand to evaluate coun-

terfactual income-contingent subsidy schemes. Our framework embeds a homeowner’s

decision to install rooftop solar panels into a dynamic consumption/savings framework.

Installing solar panels involves an upfront monetary cost but delivers subsidies and a

stream of electricity production over the life of the panel. Households face borrowing

constraints and, therefore, may not be able to fully smooth consumption if they choose

to purchase solar panels. The model includes household heterogeneity in solar irradiance,

preferences, and prices faced by households across space, as well as a rich quantification

of the current federal and state subsidy schemes for solar panels, which accounts for dif-

ferences in time profiles across which subsidies are paid and the nonrefundable nature of

the Federal Investment Tax Credit.

We structurally estimate the model via indirect inference by using the remotely sensed

data on residential solar installations from Deepsolar, as well as data on solar irradiance,

electricity prices, subsidies, and income distributions across census tracts in the US. To

achieve identification, we target our partial elasticity estimates from our border discon-

tinuity regressions, as well as additional moments on solar panel installations across the

income distribution and demographic groups. We show that our sparsely parameterized

model matches both installation rates and elasticities of installations with respect to sub-

sidies across the income distribution. The model is also consistent with non-targeted

quasi-experimental estimates of the responsiveness of solar installations with respect to

prices and subsidies.

Our estimated structural model provides a framework that allows us to quantify the

equity-efficiency consequences associated with various subsidy schemes. We first turn our

attention to the current subsidy scheme for residential solar in the US. Current subsi-

dies for residential solar are highly regressive, driven by the fact that installation rates
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increase strongly with household income. To understand the factors driving this regres-

sivity, we use our model to decompose the mechanisms that create the positive correlation

between income and installation rates. Our model-based decomposition reveals that bor-

rowing constraints and the non-refundability of the Federal Investment Tax Credit play

the largest roles in explaining differences in installation rates among low- and high-income

homeowners, while differences in preferences and the distributions of low- and high-income

households across space play smaller roles.

We then use the estimated model to analyze the effects of introducing small income-

contingent subsidies to the current subsidy scheme. Consistent with our reduced-form

results, we find that introducing income-targeted subsidies for low-income households in-

duces more electricity production per dollar of public funds than income-neutral subsidies.

We show that the larger number of non-additional households at high income levels is the

primary driver of differences in cost-effectiveness across income groups: Households who

would have installed panels absent these subsidies receive over 50% of subsidies targeted

at the 75th income percentile, as compared to roughly 35% of subsidies targeted at the

25th income percentile.

Next, we consider a planner who chooses income-contingent subsidies to maximize

solar production without increasing fiscal costs. Despite the fact that this social objective

places no weight on equity, we find that the efficient subsidies are highly progressive.

The increase in progressivity associated with moving to these subsidies and the resulting

increase in installation rates for low-income households lead to a much more equitable

distribution of public funds: the amount of solar subsidies received by households in the

bottom income quartile nearly triples, while the amount received by households in the top

quartile is reduced by half. This scheme also increases national solar production by 2.4%

at no additional fiscal cost.

We then consider a planner who maximizes utilitarian welfare subject to a net cost con-

straint. The welfare-maximizing schedule is slightly more progressive than the production-

maximizing subsidies, as means-tested subsidies increase solar production while channel-

ing funds towards poorer households who have higher marginal utilities of income. This

progressive subsidy scheme increases national solar production by 2.0%. Means-tested

subsidies are justified on both equity and efficiency grounds.

We then conduct a series of robustness and sensitivity checks of our structural results.

We examine how sensitive our findings are to 1) alternative assumptions on households’

dynamic income process, 2) alternative household discount rates, 3) a government who

maximizes environmental benefits rather than solar production, and 4) decreases in the

cost of solar panels. Across all specifications, we reach the same qualitative conclusions:

the efficient income-contingent subsidies are decreasing in income, and switching to means-
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tested subsidies leads to substantial equity and efficiency gains.

It is important to caveat that we assume a partial equilibrium framework throughout

our analysis and, therefore, abstract away from endogenous changes in electricity prices

or prices of solar installations.5 Accounting for endogenous responses of electricity prices

may be particularly important in states with net metering, where electricity companies

may raise electricity prices in response to increased residential solar in order to recover

the costs associated with providing net metering.6 Further, the main focus of this paper is

finding efficient subsidies for residential solar, holding constant total government spending

on residential solar. We do not analyze whether the total amount of spending on residential

solar subsidies is optimal, nor do we consider subsidies for utility-scale solar.7

To the best of our knowledge, ours is the first paper to quantify the efficient income-

contingent subsidies for solar panels. This focus on income-contingent subsidies differenti-

ates our paper from other papers which use structural models to analyze the effectiveness

of various types of income-neutral subsidies for solar panels (e.g., Burr, 2014; De Groote

and Verboven, 2019; Langer and Lemoine, 2022; Feger, Pavanini, and Radulescu, 2022; Co-

las and Reynier, 2024; Snashall-Woodhams, 2024; Bollinger, Gillingham, and Kirkpatrick,

2025).8 Of these, our paper is closest to Feger, Pavanini, and Radulescu (2022) and Colas

and Reynier (2024). Feger, Pavanini, and Radulescu (2022) analyze the equity-efficiency

trade-offs associated with solar panel cost subsidies and energy tariffs by estimating a

rich, dynamic model of solar panel installation and electricity usage using detailed Swiss

data. They do not model savings. Instead, preference parameters that directly depend

on household wealth generate differences in installation behavior across income groups.9

Colas and Reynier (2024) use data from the Deepsolar database to study how subsidies for

residential solar panels should optimally vary across space, with a focus on spatial vari-

5See Pless and Van Benthem (2019), for example, for evidence that suppliers of solar installations may
increase prices in response to subsidy increases.

6See, e.g., Borenstein and Bushnell (2022).
7Colas and Reynier (2024) find that spending on subsidies for residential solar in the US substantially

exceeds the optimal level. We also do not quantify the extent to which increases in residential solar may
crowd out utility-level solar. This crowd-out of utility-level solar may be particularly relevant in states that
use a combination of utility-level renewable sources and rooftop solar to meet renewable energy standards.
In Appendix C.13, we solve for the income-contingent subsidy schedule that minimizes government cost
subject to the constraint that total rooftop solar production is equal to the current level. The schedule is
nearly identical to the production-maximizing schedule (though slightly less generous). It would not lead
to crowd-out of utility-level solar as rooftop solar production is held constant.

8Snashall-Woodhams (2024) uses a dynamic model and data from California to solve for optimal
subsidies that vary by electricity consumption type, rooftop, and location. Dorsey and Wolfson (2023)
analyze differences in solar installation purchases across income and race groups and calculate differences
in consumer surplus across demographic groups. Bollinger, Gillingham, and Kirkpatrick (2025) estimate
a dynamic model of solar adoption and sizing where household discount rates vary by household wealth.

9Relatedly, Kiribrahim-Sarikaya and Qiu (2023) use data from Phoenix, Arizona, to estimate a dynamic
model of solar adoption. They also do not model savings. They use the model to simulate the effects of
making federal tax credits refundable and introducing subsides targeted at lower income groups.
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ation in the environmental benefits of solar energy. Households are not differentiated by

income, and savings are not modeled. In addition to our novel focus on income-continent

subsidies, we contribute to this literature methodologically by 1) modeling households’ dy-

namic consumption/savings decisions in an environment with borrowing constraints and

2) utilizing a utility function that exhibits nonzero income effects. These features allow

our model to replicate two patterns in the data that play a pivotal role in determining the

returns to targeted subsidy increases: 1) installation rates across the income distribution

and 2) elasticities of installations with respect to subsidies across the income distribution.

More broadly, we are also related to a literature which quantifies the distributional ef-

fects of energy policy (e.g., Bento et al., 2009; Borenstein, 2012; Jacobsen, 2013; Borenstein

and Davis, 2016; Fried, Novan, and Peterman, 2018; Reguant, 2019; Davis and Knittel,

2019; Holland et al., 2019; Goulder et al., 2019; Morehouse, 2021; Hahn and Metcalfe,

2021; Linn, 2022; Cahana et al., 2022; Fried, Novan, and Peterman, 2022; Dauwalter and

Harris, 2023). We contribute to this literature by quantifying the dual equity-efficiency

benefits in the case of residential solar subsidies. Finally, this paper is also related to sev-

eral reduced-form papers estimating the responsiveness of solar installations to subsidies

in the United States, which we discuss in Section 3.4. Relative to these papers, we focus

on how the responsiveness of installations varies as a function of household income.

2 Reduced-Form Analysis

2.1 Cost-Effectiveness and Means-Tested Subsidies

We begin by deriving simple sufficient conditions for the cost-effectiveness of progressive

subsidies in a general model. Individual households are associated with an income level

y ∈
[
y, y

]
. The government has access to a system of income-contingent subsidies for solar

electricity production characterized by the function s, where s(y) denotes the production

subsidy available for households with income y.10 Let Ky (s(y)) be a function that maps

subsidies for income level y to total solar production from households of income level y.

We assume that Ky (·) is increasing in subsidies, s(y). Further, let

Prod[s] =

∫ y

y

Ky (s(y)) dy

10For simplicity, we assume that the government only has access to these income-contingent production
subsidies. In the structural model, we will include a rich model of subsidies for solar panels, including
state and federal investment subsidies.
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denote the functional which maps the subsidy function s to total electricity production

and let

Cost[s] =

∫ y

y

Ky (s(y)) s(y)dy

denote the functional which maps s to fiscal cost.

Assume there are initially no income-contingent subsidies, as is the case federally,

such that s(y) = s̄ for all income levels y, where s̄ is a nonnegative constant. We are

interested in the implications of small changes to the subsidy function around this income-

neutral baseline. Formally, let δs denote a variation to the function s such that subsidies

received by any income level y change to s̄ + δs (y), where δs (y) represents an arbitrary

infinitesimal change to subsidies.11 We will focus on variations that are 1) cost-neutral and

2) progressive. Cost-neutral variations are those that lead to no change in fiscal cost, and

progressive variations are those that are decreasing in income, such that subsidies become

more generous for low-income households and less generous for high-income households.12

Proposition 1 provides a simple sufficient condition for when cost-neutral progressive

subsidy variations lead to increases in solar production.

Proposition 1. Define

η(y) ≡
∂Ky

∂s(y)

Ky

(1)

as the “cost-effectiveness” of a subsidy increase for a given income level y. If η is weakly

decreasing (increasing) in income and η
(
y
)
> η (y)

(
η
(
y
)
< η (y)

)
, then any cost-neutral

progressive subsidy variation leads to a strict increase (decrease) in solar production.

Proof. Appendix A.1

Proposition 1 shows that we can use measures of η across the income distribution as

sufficient statistics for when moving to progressive subsidies can increase production: if

η is decreasing in income, then cost-neutral progressive subsidies variations will lead to

11Explicitly, we consider moving from the subsidy function s (y) = s̄ to the alternative subsidy function
s̃(y) = s̄+ ϵg(y), where g(y) is a function in y and where we take the limit as ϵ → 0.

12Formally, a cost-neutral variation is any variation δs such that∫ y

y

δCost

δs (y)
δs (y) dy = 0,

where δCost
δs(y) is the functional derivative of Cost[s] with respect to δs (y). A progressive variation is any

variation δs such that
(y′′ − y′) (δs(y′′)− δs(y′)) < 0

for y′′ ̸= y′.
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production increases. If η is decreasing in income, then these progressive subsidy variations

lead to production decreases.13

To see why this is the case, consider first the derivative ∂Ky

∂s(y)
in the numerator of equa-

tion (1), which we refer to as the amount of “additional production.” This value indicates

how much solar production will increase in response to a small increase in subsidies for

a given income level. All else equal, it is more cost-effective for the government to raise

subsidies for income levels where additional production is high, as subsidy increases for

these households will lead to larger increases in total solar production. The denominator

measures the amount of “non-additional production,” the amount of production by pan-

els installed absent that subsidy increase. If subsidies increase, households receive higher

subsidies for this non-additional production, even if they do not increase solar production.

Consequently, more non-additional production implies higher marginal costs for the gov-

ernment. Together, we can think of this ratio of additional over non-additional production

as measuring the “bang for your buck” of a targeted subsidy increase since it measures the

total change in solar production per dollar paid to non-additional households. Our goal in

the coming sections is to empirically estimate how η varies across the income distribution.

2.2 Data and Descriptive Results

We empirically estimate the cost-effectiveness of income-targeted subsidies using tract-

level variation in solar production and state-level variation in subsidies. For this, we need

a large sample of tract-level data on installations and income levels across the US and

state-level data on solar panel subsidies.

Solar panel installations We use the Deepsolar database (Yu et al., 2018) for tract-

level residential solar panel installations and total panel area across the 48 states in the

contiguous US. These data result from a deep-learning model trained to detect solar panels

from satellite imagery captured in 2016, providing the first comprehensive and spatially

fine measurement of solar panels.14 In addition to providing the deep-learning model out-

13In Appendix A.2, we relate the distribution of cost-effectiveness across the income distribution to
production-maximizing subsidy schedule for a budget-constrained government. We show the production-
maximizing subsidy schedule s⋆ (·) must satisfy

s⋆ (y) =
1

λ
− 1

η⋆(y)

for all income levels y, where λ is the Lagrange multiplier from the government’s budget constraint and
η⋆(y) is the cost-effectiveness associated with income level y given the production-maximizing subsidy
schedule. Therefore, the production-maximizing subsidy schedule will be decreasing in income if and only
if η⋆ is decreasing in income.

14Alternatives rely on self-reported data (e.g., Open Solar Project) or do not cover the entire US (e.g.,
Tracking the Sun).
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(a) Census tract income percentiles. (b) Census tract residential solar production percentiles.

(c) Solar production per capita by tract-level income. (d) State residential solar subsidies in $/kWh.

Figure 1: Spatial variation in tract income, tract solar panel production, and state solar subsidies. Income
comes from the 2015 5-year ACS, solar production from Deepsolar, and subsidies from Sexton et al. (2021).
Panel (c) shows coefficients from regressing annual solar production per captia on 11 income bins evenly
spaced in log income. Standard errors are clustered by state.
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put, Deepsolar attaches several other variables for each census tract collected from many

sources. These include solar irradiance from NASA Surface Meteorology and Solar Energy,

state-average retail electricity prices from the EIA, and average income and other demo-

graphic data from the 2015 5-year American Community Survey (ACS).15 We calculate

solar production in each census tract by multiplying total residential panel area in a tract

by its average solar radiation.

Panels (a) and (b) of Figure 1 show the spatial distribution of tract-level average income

and total residential solar production. Solar production is concentrated in sunny areas

such as the Southwest, Florida, and California and high-subsidy states in the Northeast.

Meanwhile, income is highest along the East Coast, California coast, and surrounding

major cities. Panel (c) depicts the relationship between tract-level average income and

solar production per capita. Solar production is strongly increasing in income: the lowest

income tracts, those with average income less than 38 thousand dollars, produce around 50

kWh of residential solar electricity per capita annually. The highest income tracts, those

with an average income over 117 thousand dollars, produce around 400 kWh of residential

solar electricity per capita annually, eight times higher than the lowest income tracts.

Solar subsidies We use measures of state-level solar panel subsidy generosity calcu-

lated by Sexton et al. (2021) using 2017 data from the Database of State Incentives for

Renewables and Efficiency (DSIRE).16 They calculate these generosity measures as the

total subsidies per kWh of production that an average-sized installation in each state

is eligible for, accounting for federal and state investment tax credits, state production

credits, property and sales tax rebates, Solar Renewable Energy Certificates, and other

state-level subsidies.17 We will refer to these measures as the “generosity” of subsidies in

each state, which we use in the reduced-form estimation of how responsiveness to subsidies

varies across income groups. We disaggregate into several different types of subsidies in

the formal quantitative model that follows.

As we discuss further below, one potential concern is that this subsidy data is from

2017, but many of the solar installations are from prior to 2017. We assess the robustness

of our reduced-form results with respect to the subsidy measure in Appendix B.4, where

we utilize a “historically-adjusted” subsidy generosity measure from Sexton et al. (2021).

Panel (d) of Figure 1 shows the spatial distribution of state subsidies. Generally

15Notably, we use population density, percent with a college degree, percent owner-occupied homes.
Percent voting Democrat in the 2016 election comes from townhall.com.

16While several states currently have income-contingent subsidy programs in place, the majority of
these programs were introduced after 2016, and therefore the solar installations we observe in our data
would not have been eligible for these subsidies.

17Unlike Sexton et al. (2021), we do not include net metering as a subsidy in our analysis as the
government does not pay for it.
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speaking, subsidies are most generous in the Northeast. Massachusetts has the highest

subsidies in the country, at 28 cents per kWh. Meanwhile, several states that do not offer

any subsidies in addition to the federal incentives have subsidies under 4 cents per kWh.

Border Discontinuities Our main empirical strategy is to use border-discontinuity

regressions to estimate how the responsiveness of solar production compares across tracts

with varying average income levels. To motivate this strategy, we present descriptive

evidence on how solar production levels in low- and high-income tracts change as we

cross the border from a state with less generous subsidies to a state with more generous

subsidies.

We define a tract’s location relative to the nearest border as the positive distance

to the border for tracts on the side of the border with more generous subsidies and the

negative distance to the border for tracts on the side with less generous subsidies. We then

categorize tracts into 10-mile-wide bins based on this location relative to the border, and

regress log solar production per capita on state-border fixed effects, fixed effects for these

location bins, and controls for population density.18 We run these regressions separately

for high- and low-income tracts, where tracts are categorized as “high-income” if their

average income is in the top quartile of tract-level income and are labeled as “low-income”

otherwise. We then plot the estimated location-bin fixed effects, which show conditional

average production levels for low- and high-income tracts in narrow bandwidths around

state borders.

Ideally, we would like to compare discontinuities in these average production levels at

state borders to learn about how the responsiveness of solar production to subsidies varies

across income groups. One issue is that, as we show in Appendix B.1, high-income tracts

are more likely to be located in the Northeast, where the differences in subsidies across

states borders tend to be large, while lower income tracts are more likely to be located in

the South, where subsidy levels are relatively similar across states. As a result, a regression

run with only high-income tracts places greater weight on state borders where subsidy

differences are large, while a regression run with only low-income tracts places greater

weight on state borders where subsidy differences are small. To make the weighting of

state borders consistent across the two regressions, we reweight observations such that a

given state border receives the same weight in both the regression with only low-income

tracts and in the regression with only high-income tracts.19

18This follows the approach used by Bayer, Ferreira, and McMillan (2007) to visualize how house prices
respond to changes in school quality around school district borders.

19We reweight observations in each of the two regressions such that the sum of weights around each
state border is equal to the total population of all tracts in that border region. Formally, let Popℓ denote
the population of a given tract ℓ, let Popθ denote the total population in all tracts in the region around a
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Figure 2: Border Discontinuities in Log Production per Capita. The graph plots estimated location-bin
fixed effects from a regression log production per capita in high-income tracts (hollow circles) and low-
income tracts (solid circles) on border fixed effects, location-bin fixed effects, and controls for population
density. Positive values on the X-axis represent households on the side of the border with more generous
subsidies, and negative values on the X-axis indicate the side of the border with less generous subsidies.
Observations are reweighted such that the total sum of weights around each state border is equal to the
total population of all tracts in that border region.

Figure 2 plots the estimated location-bin fixed effects for high-income and low-income

tracts. Positive values on the X-axis represent tracts on the side of the border with more

generous subsidies, and negative values on the X-axis represent tracts on the side with less

generous subsidies.20 We can see that log production rates for both groups increase sharply

as we move to the side with more generous subsidies and that the increase in production

is larger for low-income tracts: production rates increase by roughly 50% in low-income

tracts compared to roughly 30% in high-income tracts. These descriptive results suggest

that production rates in low-income tracts may be more responsive to increases in subsidies

than production rates in high-income tracts.

2.3 Empirical Strategy

We can rewrite our measure of cost-effectiveness in equation (1) as a partial elasticity,

η(y) ≡
∂Ky

∂sy

Ky

=
∂ logKy

∂sy
. (2)

given border θ, and let PopIθ denote the total population tracts of income group I around a given border
θ. In our regression for tracts of income level I, we weight tract ℓ in border region θ by Popθ

Popℓ

PopI
θ

. We

show the graphs without reweighting in Appendix B.1.
20The regressions omit the location-bin fixed effect for the location bin nearest to the border on the

less generous subsidy side. Therefore, we can interpret these estimated location bin fixed effects as the
conditional average of log production rates in a given location bin relative to this omitted bin.
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If these partial elasticities are decreasing in income, then means-tested subsidies can in-

crease solar production at no additional fiscal cost. Our reduced-form strategy is to es-

timate how these empirical partial elasticities vary across income levels using tract-level

data on solar installations outlined above.

Concretely, we estimate various forms of the regression

logKℓ = β(Yℓ)sℓ + x′
ℓγ + εℓ, (3)

where Kℓ is total solar production in census tract ℓ, Yℓ is average income in tract ℓ, sℓ is

the generosity of subsidies available in tract ℓ, and xℓ is a vector of controls. The object

of interest, β(Yℓ), gives the empirical partial elasticity of solar capacity with respect to

subsidies for tracts with average income Yℓ. In practice, we will use several methods to

parameterize how β(·) varies as a function of income.

Before discussing the parameterization of β(·), it is important to highlight that we

use tract-level, not household-level, data on solar production. We therefore estimate the

partial elasticity of tract-level solar production as a function of tract-level average income

level, not the partial elasticity of production as a function of household income.21 Census

tracts are small geographic areas that are designed such that the population within each

tract is relatively homogeneous in terms of demographic and economic characteristics.22

In our structural analysis, we model a distribution of household income within each tract

and account for the fact that tract-level elasticities differ from household-level elasticities.

Border Discontinuity Regressions Our first method to parameterize β(·) is to assume

the partial elasticity of solar production is linear in log income and utilize a border-

discontinuity approach.23 Formally, let θ denote the nearest state border to a given tract

and let Locℓ denote the location of the tract relative to this border, again defined as the

positive distance to the border for tracts on the side of the border with more generous

subsidies and the negative distance to the border for tracts on the side with less generous

subsidies.24 Further, let the variable Ŷℓ denote “de-medianed” income, calculated as tract-

21In Appendix A.3, we show that the tract-level partial elasticity which we estimate is equal to the
production-weighted average of the household-level partial elasticity within the tract. Note that some
policies, such as the Low-Income Communities Bonus Credit Program, base eligibility on local average
income, rather than individual household income. In this case, the partial elasticity as a function of local
average income would be the relevant elasticity.

22https://www.census.gov/data/data-tools/survey-explorer/geo.html.
23Hughes and Podolefsky (2015) and Colas and Reynier (2024) also use border-discontinuity approaches

to estimate the effects of subsidies on solar panel installations. Neither paper estimates how the respon-
siveness of installations with respect to subsidies varies across income groups.

24Which of the two sides is normalized as the positive side does not affect any of the results as we always
use border-specific polynomials. In Appendix B.1 we visualize the discontinuities in subsidy generosity
and installation rates at state borders. In Figure 3 we show that household demographics do not exhibit
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level income less the median income level. Limiting our sample to tracts within 40 miles

of state borders, we run regressions of the following form:

logKℓ = βDis
0 sℓ + βDis

1 sℓ × log Ŷℓ + x′
ℓγ

Dis + gθ (Locℓ) + εDis
ℓ . (4)

The term gθ (Locℓ) is a border-specific smooth flexible function in a tract’s location relative

to the border, and controls for unobservables which may affect solar production rates. In

practice, we specify these functions as border-specific polynomials which vary from degree

0 polynomials, in which case gθ (·) is simply a border fixed-effect, to polynomials of degree

5.

The parameters of interest are βDis
0 , which gives the empirical partial elasticity of

solar production for tracts at the median income level, and βDis
1 , which dictates how this

partial elasticity varies with tract-level income. A value of βDis
1 < 0 implies that the

partial elasticity of solar production with respect to subsidies is decreasing in income, and

therefore, means-tested subsidies can increase solar production without increasing fiscal

cost.

Nonlinear Specifications Given that the border-discontinuity approach is quite de-

manding of the data, we cannot reliably estimate border-discontinuity models where the

partial elasticity of solar production varies flexibly with income. 25 Instead, we consider

an alternative strategy in which we expand our sample to all tracts, including those not

around state borders, and estimate two specifications that allow for flexible non-linearities

in this empirical partial elasticity.

The first of these specifications divides tracts into “bins” based on their average income

level and estimates separate coefficients for each bin. Letting 1 (ℓ ∈ Binb) denote that tract

ℓ falls within income bin b, we estimate

logKℓ = βBin
0 sℓ +

∑
b̸=b0

βBin
b sℓ × 1 (ℓ ∈ Binb) + x′

ℓγ
Bin + εBin

ℓ . (5)

Thus, βBin
0 gives the empirical partial elasticity associated with base income bin b0, and

the βBin
b coefficients tell us how partial elasticity in income bin b differs from that of the

base income bin. In practice, we will set the base income bin as the bin corresponding to

median tract-level income level such that βBin
0 gives the partial elasticity at this median

income level.

discontinuities at state borders.
25These discontinuity regressions rely on within-border variation in subsidies, and thus, identification of

a non-linear effect of subsidies requires within-border variation in subsidies within narrow bins in income.
Since we only have tract-level income available, there is insufficient variation in subsidies across all income
bins.
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Next, we estimate a model that allows for heterogeneity in the partial elasticities with

cubic B-splines,

logKℓ =
H∑

h=1

βSpl
h sℓ ×Bh(Yℓ) + x′

ℓγ
Spl + εSplℓ , (6)

where B1(Y ) to BH(Y ) are standard basis functions for a cubic B-spline degree H. This

specification balances allowing for arbitrary non-linearities while estimating relatively few

parameters. The estimated partial elasticity for a given income level Y is a weighted

average over the H spline coefficients, where the weights are given by the basis functions

Bh(Y ).

Controls All regressions include controls for tract-level income, electricity prices, elec-

tricity prices interacted with income, solar irradiance, population density and popula-

tion density squared, and a battery of tract-level demographic measures. The border-

discontinuity regressions include the border-specific polynomials introduced above while

the nonlinear specifications include census region or census division fixed effects.

2.4 Reduced-Form Results

Border-Discontinuity Regressions Table 1 reports parameter estimates from equa-

tion (4), the border discontinuity regression with partial elasticity linear in log income.

Each column corresponds to a different specification. Specifications vary the bandwidth

around state borders (either 40 or 80 miles from state borders) and the degree of the

polynomials in location relative to the state border (polynomials of degree 0, 3, and 5).26

Column (3) contains our preferred specification, with a 40-mile bandwidth and 3rd-

degree border distance polynomials. The estimates imply that a one cent per kWh increase

in subsidies is associated with a 4.3% increase in solar production for a tract at the median

income level and that this elasticity is decreasing in tract-level income. The same one cent

per kWh subsidy increase is associated with only a 3.4% increase in solar production per

capita for a tract at the 90th percentile of the income distribution. In other words, the

empirical partial elasticity of solar production with respect to subsidies for tracts at the

median income level is 28.0 percent higher than the partial elasticity for tracts at the 90th

percentile income level. The estimates in column (4), where we use an 80-mile bandwidth,

are similar, implying that the partial elasticity at the median income level exceeds that at

the 90th percentile by 27.7 percent.

26Appendix B.4 shows results for various other bandwidths and border-specific-polynomial degrees. The
results are similar except for the smallest bandwidths.
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The first two columns of Table 1 show results when we include polynomials of degree

0 in location relative to state borders, equivalent to including border fixed effects. These

specifications result in elasticities that have a similar slope with respect to income but

are slightly higher in levels than our main specification—a one cent per kWh increase in

subsidies increases solar production by 6.0 to 6.5 percent for a tract at the median income.

These partial elasticities for the median income tracts are 15.3 to 18.7 percent higher than

those of tracts at the 90th income percentile.

Finally, columns (5) and (6) of Table 1 use fifth-degree border polynomials and again

find similar results. In these specifications, the partial elasticity of solar production with

respect to subsidies is 38.1 to 43.5 percent higher for tracts at the median income compared

to those at the 90th percentile. Taken together, we find that the partial elasticity of solar

production is strongly decreasing in tract-level income.
Table 1: Effect of Subsidies on Log Production per Capita

Border Polynomial Deg. 0 3 5

Bandwidth (mi) 40 mi 80 mi 40 mi 80 mi 40 mi 80 mi
Model: (1) (2) (3) (4) (5) (6)

Variables
Subsidy 6.04∗∗∗ 6.53∗∗∗ 4.31∗∗ 4.74∗∗ 3.57∗ 4.02∗∗

(0.949) (1.08) (2.01) (1.93) (2.11) (1.95)
Subsidy × Log Income -1.50∗∗ -1.92∗∗ -1.76∗∗∗ -1.92∗∗ -2.02∗∗∗ -2.07∗∗∗

(0.704) (0.913) (0.428) (0.845) (0.450) (0.681)

Fit statistics
Observations 20,187 30,410 20,187 30,410 20,187 30,410
R2 0.48 0.49 0.55 0.55 0.55 0.56

Clustered (State) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Estimates of coefficients from Equation (4). Sample is limited to tracts within either 40
or 80 miles bandwidths to state borders. All regressions include controls for tract-level
income, electricity prices, electricity prices interacted with income, solar irradiance,
population density and population density squared, a battery of tract-level demographic
measures, counts of other state-level solar policies, and border-specific polynomials in
location relative to border.

One threat to identification is that household preferences for solar panels may be

discontinuous at state borders. This discontinuity could occur if, for example, households

with a stronger preference for solar panels tended to locate on the side of the border

with more generous subsidies. We investigate this type of sorting in Figure 3, where we

look for discontinuities in household demographic characteristics around state borders.
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(a) Percent College Degree (b) Percent Democrat (c) Average Household Income

Figure 3: Border Discontinuities in Demographics and Household Income. Each graph plots estimated
location-bin fixed effects from a regression of the variable in question on border fixed effects and location-
bin fixed effects. Positive values on the X-axis represent households on the side of the border with more
generous subsidies, and negative values on the X-axis indicate the side of the border with less generous
subsidies.

Specifically, we categorize tracts into 10-mile-wide bins based on their location relative to

the border and regress various demographics on state-border fixed effects and fixed effects

for these location bins. Figure 3 plots these estimated location-bin fixed effects for (a)

average household income, (b) percent of individuals with a college degree, and (c) percent

of voters in the county who voted Democrat in the 2016 presidential election. There is

no discontinuity in these characteristics as we cross to the side of the border with more

generous subsidies. These results suggest that household sorting is unlikely to bias our

estimates.

Beyond subsidies, some states implement other programs designed to encourage solar

installations, such as state-sponsored financing programs for solar installations or incen-

tives for builders to incorporate solar panels into newly built structures. Another potential

threat to identification is that these other state measures may lead to discontinuities in

solar installation rates at state borders. In Appendix B.4, we address this by rerunning

the border discontinuity regressions with additional controls for these other state-level pro-

grams aimed at increasing solar installations that are not included in our subsidy measures.

Our results remain robust even with the inclusion of these additional controls.

Note that we can only use tracts with positive solar production when estimating re-

gressions with logKℓ as the outcome. About a quarter of tracts have zero production in

the Deepsolar data. In Appendix B.5, we explore how our focus on tracts with positive

production affects our conclusions on cost-effectiveness. Empirically, we estimate border

discontinuity models to assess the impact of subsidies on the likelihood of a tract having

any installations, a relationship we term the “extensive margin” elasticity.27 We show that

1) this extensive margin elasticity is small in magnitude, and 2) like our baseline partial

elasticity estimates, the extensive margin elasticity is decreasing in income. The results

suggest that restricting our sample to tracts with positive solar production in the baseline

27Our approach is in the spirit of the “hurdle” approach of Gillingham and Tsvetanov (2019).
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(a) Partial elasticity using income bins. (b) Partial elasticity using cubic B-splines over income.

Figure 4: Partial elasticity of solar production across the tract-level income distribution. Panel (a)
estimates a separate partial elasticity for 11 income bins, while panel (b) uses cubic B-splines. Both
present estimates relative to a tract at the median income. We estimate the partial elasticity to be 7.81
for the median income bin on the left and 7.36 at the median income using splines on the right when
using census division fixed effects. The green line shows in each figure shows estimates from a regression
which includes regions fixed effects and the orange line shows estimates from a regression which includes
division fixed effects. All regressions include the controls variables listed in the text. Standard errors are
clustered by state. Cubic B-splines have 7 knots evenly spaced based on population weighted income.

regressions is unlikely to change our main conclusions and would likely only strengthen

them.

Another issue is we run our regressions using subsidy data from 2017 despite the fact

that many of the installations in our data occurred before 2017. To understand how

our use of 2017 subsidies might influence our main conclusions, we conduct a robustness

exercise using the “historically-adjusted” subsidy generosity measure from Sexton et al.

(2021). This measure is calculated by first determining the net present value of subsidies a

household in a given state would receive for an installation in each year from 2000 to 2017,

based on the subsidy levels available in that year. They then take the weighted average

of the subsidy values across, weighted by the number of installations each year. We rerun

our main regressions using this alternative subsidy measure in Table A3. The results are

qualitatively similar to our baseline results.

Nonlinear Specifications Figure 4 demonstrates results from two approaches that

allow the partial elasticity to vary non-linearly with income—using bins in log income

and cubic B-splines over income levels—across specifications with either census region or

division fixed effects.28 Figure 4a shows estimates of the βBin
b from equation (5), where

28These models use data from all census tracts and include controls for tract-level income, electric-
ity prices, electricity prices interacted with income, solar irradiance, population density and population
density squared, and a battery of tract-level demographic measures.
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we divide tracts into 11 income “bins” based on their income level. The orange line

shows estimates of βBin
b across income bins from a regression that uses census region fixed

effects, and the green line shows estimates from a regression with census division fixed

effects. Recall that βBin
b measures the partial elasticity in income bin b relative to the

partial elasticity in tracts with the median income level. We obtain estimates of βBin
0 ,

the parameter which gives the partial elasticity in tracts with the median income level of

6.0 in the regression with region fixed effects and 7.8 in the regression with division fixed

effects.

In both specifications, the partial elasticity of production is relatively similar for tracts

with income levels below the median income but drops steeply for tracts above the median

income. Using the specification with region fixed effects, a tract at the 90th percentile of

income (contained by the $117K income bin) has a partial elasticity of 3.9—implying that

the partial elasticity for a tract at the median income is 54 percent higher than a tract at

the 90th percentile. Similarly, the estimates from the regression with division fixed effects

imply that the partial elasticity is 43 percent higher for a tract at the median income than

a tract at the 90th percentile.

Figure 4b shows results where we use cubic B-splines to estimate partial elasticities

as a smooth and continuous function of income while still allowing for arbitrary nonlin-

earities. To maintain comparability to the bin specification, we normalize the estimated

partial elasticities relative to that of the median income. Again, the results from these

specifications are similar to those of our other specifications. We estimate that a one-cent

increase in subsidies leads to a 5.6 or 7.4 percent increase in solar production using re-

gion or division fixed effects, respectively. Meanwhile, a tract at the 90th percentile only

increases solar production by 4.0 or 5.5 percent in response to the same one-cent subsidy

increase. Thus, a median tract has a partial elasticity that is 33.5 to 39.2 percent higher

than a tract at the 90th income percentile. Unlike when we use bins, the spline specifica-

tion suggests that the partial elasticity may be considerably higher for the lowest-income

tracts, though this increase is not statistically significant.

Regardless of the specification, we consistently find that the partial elasticity of resi-

dential solar production per capita decreases with income, with the steepest drop above

median income. Our results suggest that this partial elasticity may further increase in

locations with below-median income relative to those with median income; however, this

increase is not consistent across specifications and is not statistically significant.

Robustness In Appendix B.4, we examine the robustness of our reduced-form results to

alternative outcomes (total production, total panels, panels per capita, installations, instal-

lations per capita), alternative bandwidths for border-discontinuity regressions, alternative
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controls, excluding states without net-metering, using a Poisson model, and alternative

means of estimating heterogeneity in the partial elasticity by income level. The results

remain qualitatively the same in each case: the partial elasticity of solar production is

decreasing in tract-level income. These results strongly suggest that the cost-effectiveness

of residential solar subsidies is decreasing in household income and, thus, that a decrease

in subsidies for high-income households and an increase in subsidies for low-income house-

holds could achieve increased residential solar production at the same fiscal cost.

3 Quantitative Model and Estimation

Our reduced-form results suggest that employing means-tested subsidies may allow policy-

makers to increase solar production without increasing fiscal costs. That analysis does not

allow us to determine the magnitude of the benefits of introducing federal means-tested

subsidies nor the efficient schedule of means-tested subsidies. Here, we construct and

structurally estimate a partial equilibrium model of solar panel demand with borrowing

constraints. Homeowners in the model make a once-and-for-all decision whether to in-

stall solar panels, considering the lifetime costs and benefits. Homeowners face borrowing

constraints, meaning low-income homeowners may not install panels despite the long-run

benefits.29 We use the estimated model to evaluate the equity and efficiency consequences

of introducing various income-contingent subsidy schemes and to quantify the efficient

subsidy schedule.

3.1 Model

Homeowners are indexed by i, and time is indexed by t = 1, ...T , which in our empirical

setting will be years. In t = 1, homeowners choose whether to install solar panels, consid-

ering the lifetime costs and benefits of installation.30 Let mi ∈ {0, 1} indicate whether or

not a homeowner installs solar panels and let Ni be the number of solar panels homeowner

i installs conditional on installation.

Each homeowner has access to solar panel technology that can produce a stream of

solar energy of {Ait}Tt=1 over time, where Ait represents the amount of electricity each

panel installed by homeowner i will produce in year t. This measure of solar production

captures both differences in sunlight at their residence and depreciation of solar panels

29Renters do not typically install solar panels. We therefore only model the installation decision of
homeowners and assume households who are not homeowners do not install solar panels.

30Burr (2014) use an optimal stopping model where households decide whether to install each period,
exiting the market if they do choose to install. Gillingham and Tsvetanov (2019) presents evidence that
households in most states do not treat installation as an install or wait decision.
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over time.

Budget Constraint Homeowners who install panels pay an upfront installation cost

but receive value from the electricity that the panels produce over time. Let the function

pInsj (Ni) denote the monetary cost of installing Ni panels and let pj denote the price of

electricity, where j indexes the state in which a homeowner lives.31 The total market value

of electricity produced by homeowner i in period t is therefore equal to miNiAitpj. We can

think of this as both the value of reducing the amount of electricity a homeowner needs

to purchase from the grid and the value of selling solar electricity back to the grid.

Homeowners also receive subsidies for installing solar panels and for the electricity

they produce. Let sUpfront
i (·) denote the upfront subsidy homeowner i would receive at

the time of installation and let sFlowi (·) denote the flow subsidy the homeowner i would

receive each year over the life of the panel. When we take the model to the data, we will

consider investment tax credits and sales tax rebates as upfront subsidies. We allow upfront

subsidies to depend on the cost of the installation, pInsj (Ni), to reflect that investment tax

credits and sales tax rebates depend on the cost of installation. We also allow upfront

subsidies to depend on a homeowner’s federal income tax burden to reflect that the federal

investment tax credit is a nonrefundable tax credit, meaning that the amount a household

receives cannot exceed the tax burden that they would otherwise owe.32 Empirically, we

categorize property tax rebates, renewable energy credits, and production tax credits as

flow subsidies. We allow flow subsidies to depend on installation costs to reflect that

property tax rebates often depend on the cost of installation and on Ait to reflect that

renewable energy credits and production tax credits depend on the amount of electricity

produced.

The homeowner’s budget constraint in year t = 1 is given by

ci1 + ai2 +mip
Ins
j (Ni) = yi − τ (yi) + (1 + r) ai1+

mi

(
NiAitpj + sUpfront

i

(
pInsj (Ni) , τ (yi)

)
+ sFlowi

(
pInsj (Ni) , Ait

))
, (7)

where ci1 is consumption of the numeraire good in period t = 1, ai2 is the amount the

homeowner saves for the following period, yi is household income, τ (yi) is federal income

31We assume that electricity can be purchased and sold back to the grid at this same price. For
homeowners in the 39 states with net metering, homeowners receive the retail price of electricity for the
electricity they sell back to the grid. In states without net metering, there may be different prices for
electricity purchased by the homeowner and electricity sold by the homeowner. It would be straightforward
to limit our estimation sample to states with net metering. Ito (2014) finds that consumers respond to
average, rather than marginal, electricity prices.

32Kiribrahim-Sarikaya and Qiu (2023) uses data from Arizona to analyze the effects of the nonrefundable
nature of the federal income tax credits on solar installation rates across the income distribution.

20



tax burden (not including federal solar credits), ai1 is initial assets, and r is the real interest

rate. Due to data limitations, we assume that income for each household is constant over

time. We consider a version of the model with a stochastic income process in Section 5.1.

After the first period, homeowners continue to make consumption-savings decisions

and receive electricity and flow subsidies from installed solar panels. Additionally, while

federal tax credits are nonrefundable, excess credits can be carried over to the following

years. We can write the homeowner’s budget constraint for t > 1 as

cit + ait+1 = yi − τ (yi) + (1 + r) ait+

mi

(
NiAitpj + sFlowi

(
pInsj (Ni) , Ait

)
+ sCarry

it

)
, (8)

where sCarry
it gives the value of any federal tax credits that have been carried over from

previous years.

Homeowners face a borrowing constraint in each period. We write this as

ait+1 ≥ āi, (9)

where āi is the minimum level of assets homeowner i must maintain. Specifically, we follow

Braxton et al. (2024) and parameterize the minimum asset level as a linear function of

household income:

āi = α1 + α2yi

where α1 and α2 are parameters. We use the values of α1 and α2 from Braxton et al. (2024),

who estimate these parameters using data from the Survey of Consumer Finances.33

It is important to highlight that we abstract away from changes in subsidies and prices

over time. We can therefore view our model as capturing the forward-looking installa-

tion behavior for homeowners who expect subsidies and prices to remain at their current

levels.34 Furthermore, our model differs from those in De Groote and Verboven (2019),

Langer and Lemoine (2022), and Feger, Pavanini, and Radulescu (2022), by treating the

installation decision as a one-time event, with homeowners permitted to install panels

only in the beginning of the model. Incorporating a dynamic installation decision into the

model would significantly increase the computational burden of estimating the model and

33They estimate α2 = −0.204, implying that a 1 dollar increase in income is associated with a 20 cent
increase in borrowing limit. It would also be possible to allow the borrowing limit to vary by state and
whether or not the homeowner has installed solar panels to better reflect the availability of financing
programs for solar panel installations.

34Hughes and Podolefsky (2015) and Anderson, Kellogg, and Sallee (2013) find that consumers do not
correctly forecast the extent to which prices change over time and expect future prices to be similar to
current prices. In Section 5.4, we re-calculate efficient subsidies under the assumption that installation
prices drop to 50% of their current levels.
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solving for the optimal policy. As a result, our model is not well suited to analyze how

dynamic subsidy paths will affect the timing of installations. Instead, the main goal of

our model is capturing differences in installation behavior across the income distribution

for homeowners facing a given set of subsidies.

Utility Homeowners’ lifetime utility is given by

T∑
t=1

βt−1 (cit)
1−γ

1− γ
+miϕi,

where β = 1
1+r

is the homeowner discount rate, γ is a preference parameter, and ϕi gives

the nonpecuniary benefit of a solar installation for homeowner i, reflecting inconvenience

costs or other individual preferences for installing solar panels. We specify ϕi as

ϕi = ϕ0 + ϕCollX
Coll
ℓ + ϕPolX

Pol
ℓ + σϵi,

where XColl
ℓ is the fraction of individuals with a college education in the census tract in

which the homeowner lives, XPol
ℓ is the fraction of voters in the county who voted Democrat

in the 2016 presidential election and ϵi is a logit preference draw with scaling parameter

σ. Let ϕ̄i = ϕi − σϵi denote the portion of non-pecuniary utility that does not contain an

idiosyncratic component.

Installation Probabilities Previous research has found that the number of panels per

installation does not strongly correlate with rooftop solar subsidies.35 We therefore ab-

stract away from the intensive margin decision and parameterize Ni as a reduced-form

function of homeowner income and tract-level characteristics. We estimate the param-

eters of this reduced-form function jointly with the other structural parameters using

indirect inference. We provide additional details in Appendix C.2.

Each homeowner makes a discrete choice over whether to install solar panels and

then makes consumption-savings decisions. Given that ϵi has a logit distribution, the

probability homeowner i installs solar panels is given by

Pi =

exp

(
1
σ

∑T
t=1 β

t−1 (c
m=1
it )

1−γ

1−γ
+ ϕ̄i

)
exp

(
1
σ

∑T
t=1 β

t−1 (c
m=1
it )

1−γ

1−γ
+ ϕ̄i

)
+ exp

(
1
σ

∑T
t=1 β

t−1 (c
m=0
it )

1−γ

1−γ

) ,

35Colas and Reynier (2024) find that installation size is not sensitive to monetary incentives, but the
probability of installations is highly responsive to monetary incentives. They conclude that accounting
for the extensive margin installation decision is much more important than the intensive margin decision
of the number of panels to install.
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where cm=1
it and cm=0

it give the homeowner’s optimal consumption level in period t condi-

tional on installing and not installing solar panels, respectively.

The parameter γ plays a crucial role in our analysis as it dictates how the elasticity

of installations varies across income levels. To see this, note that partial elasticity of

installation with respect to upfront subsidies sUpfront is given by

∂ logPi

∂sUpfront
=

(cm=1
i1 )

−γ

σ
(1− Pi) , (10)

where cm=1
i1 gives the homeowner’s optimal consumption choice in period 1 conditional on

installing panels. We provide a derivation of equation (10) in Appendix C.1. Homeowners

with high income and asset levels will generally have higher values of cm=1
i1 . If γ is large,

homeowners with high income and asset levels will be less responsive in their installation

decisions, all else equal.36 This lower responsiveness is because a larger value for γ means

the marginal utility of consumption decreases more rapidly as consumption levels increase.

Additionally, a higher installation probability Pi decreases responsiveness to subsi-

dies. This decrease reflects that homeowners with a higher Pi are more likely to be

inframarginal—their installation decision is unaffected by a marginal subsidy change. Fi-

nally, the parameter σ determines the overall level of the partial elasticity of installations

with respect to subsidies. A larger value of σ, representing stronger idiosyncratic prefer-

ences for solar installations across all homeowners, implies that homeowners will be less

responsive to subsidies in their installation decision.

3.2 Data

For structural estimation, we combine the data on subsidies, electricity prices, and resi-

dential solar installations described in Section 3.2 with income and homeownership data

from the ACS and solar irradiance data from Google Project Sunroof. Here, we give an

overview of the main data sources that we do not use in our reduced-form analysis. We

provide additional details on the data we use for structural estimation in Appendix C.2.

Solar Potential We use data from Google Project Sunroof (GPS) to construct the

solar potential for panels installed by each homeowner. GPS applies a machine-learning

framework to satellite imagery and provides measures of solar production capacity per

panel at the tract level, accounting for local weather conditions, rooftop sizes, and shading.

We assume a homeowner’s yearly solar potential for newly installed panels, Ai1, is equal

to the mean household solar potential in the GPS data for the homeowner’s tract. We

36To see this, note that if γ = 0, the partial elasticity of installation across homeowners will not depend
on cm=1

i1 , and variation across homeowners will only be due to differences in installation probability Pi.
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assume solar panel efficacy depreciates by a constant rate of 0.5% each year before fully

depreciating after 20 years.37

Installation Prices We assume installation prices are given by the function pInsj (Ni) =

p0,Insj +Nip
1,Ins
j , where p0,Insj is a fixed cost and p1,Insj is a per-panel cost. We take estimates

of p0,Insj and p1,Insj from Colas and Reynier (2024), who estimate these pricing functions

using data from Tracking the Sun, a project collecting data on solar panel installations.

As Tracking the Sun does not cover all states within the US, they assume that pricing

functions are common within each Census region.

Income and Initial Assets Simulating our model requires the household income distri-

bution for homeowners across the United States. For this, we construct tract-level income

distributions for homeowners by combining 1) tract-level data on average household in-

come, Gini coefficient, and number of households from the ACS, and 2) household-level

data on homeownership and income from the ACS. We describe this procedure in detail

in Appendix C.3.

An additional empirical issue is that we do not observe initial assets, ai1. To deal

with this, we use estimates of the joint distribution of income and wealth from Jäntti,

Sierminska, and Van Kerm (2015), who estimate a parametric distribution of income

and wealth in the US using data from the Survey of Consumer Finances.38 Using their

estimates, we calculate the distribution of initial assets conditional on a household’s income

level. Further details of this procedure are in Appendix C.4. We then integrate over each

household’s conditional distribution of the initial assets when simulating model outcomes.

3.3 Estimation

Our primary strategy is to estimate the model by indirect inference, where we target

regression coefficients from our reduced-form results and moments describing the distri-

bution of installations across income and demographic groups. We first compute a set of

“auxiliary models” that describe installation behavior in the data. Then, given a vector

of structural parameters, we simulate the structural model and calculate the auxiliary

models with simulated data. We repeat this procedure for different values of structural

parameters and search for the parameters such that the auxiliary models computed from

the model match those from the data.

37Jordan and Kurtz (2013) find a median degradation rate of 0.5% in their review of the literature on
depreciation rates of solar panels.

38They also provide estimates for four other OECD countries.
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Formally, let β̄ denote the vector of auxiliary model parameters we estimate in the data

and let β̂ (Θ) denote the same auxiliary model parameters computed from the structural

model given an arbitrary vector of structural parameters denoted by Θ. The estimated

vector of structural parameters is given by

Θ̂ = argminΘ

{(
β̂ (Θ)− β̄

)′
W
(
β̂ (Θ)− β̄

)}
,

where W is a weighting matrix.

We use the following auxiliary models39:

AM 1: Border discontinuity regression coefficients from estimation of equation

(4). Specifically, we regress tract-level log production on subsidies and

subsidies interacted with log average income for tracts within 40 miles of

a border with 3rd degree polynomials in distance from each border, and

the same controls as column 3 of Table 1.

AM 2: Coefficients from regressions of tract-level installations per capita on

tract-level average income.

AM 3: Average panels per capita by income quintile.

AM 4: Coefficients from regressions of tract-level installations per capita on

tract-level demographics.

AM 5: Coefficients from a regression of tract-level average number of panels per

installation on tract-level characteristics.

The parameters are well-identified. As previously noted, the parameter σ dictates the

overall partial elasticity of installations with respect to subsidies across all homeowners,

while γ dictates how these elasticities vary with household income and assets. “AM 1”

and “AM 2” help to identify these two parameters. “AM 1” describes how the elasticity

of installations with respect to subsidies varies by income, and “AM 2” describes how

installations vary with income. The parameters ϕ0, ϕColl, and ϕPol, which determine the

nonpecuniary benefits of installations, are largely identified by “AM 4”, which describes

how installations vary with tract characteristics. Finally, “AM 5” helps to pin down the

parameters that determine how the size of installations varies by demographic group.

39We show the full set of auxiliary model parameters we use in Table A10 in Appendix C.6. We weight
by the inverse of the variance of each moment. We then increase the weights on AM 1 as these moments
are particularly important for the optimal subsidies.
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3.4 Model Fit

We present the full set of estimated parameters in Appendix C.5. The estimated model

fits both targeted and untargeted moments well. We give an overview of model fit here

and leave additional results in Appendix C.6.

Targeted Moments Figure 5 plots panels per household (including non-homeowners)

across percentiles of tract-level income in the model and data. The red line shows the

panels per household in the data, while the black dashed line shows the simulated panels

from the estimated model. The model does an excellent job of matching differences in the

number of solar panels per household across the entire income distribution.

As discussed in Section 2, variation in the partial elasticity of solar production across

the income distribution is critical for determining the cost-effectiveness of subsidies by

income level. To assess the model fit in this dimension, we estimate the relationship

between log tract-level installations and subsidy generosity across income groups in the

model and the data. We again divide tracts into income bins based on the average income

level in each census tract. Let 1 (ℓ ∈ Binb) denote that tract j falls within income bin b.

Using both actual data and simulated data from the model, we run regressions of the form

logKℓ =
∑
b=1

βFit
b sℓ × 1 (ℓ ∈ Binb) + x′

ℓγ
Fit + εFitℓ , (11)

where Kℓ is the total solar production in tract j, sℓ denotes the subsidy generosity measure

from Sexton et al. (2021) which we used in our reduced-form analysis, and b indexes income

groups. We use the same controls as in Figure 4, with census division fixed effects. The

βFit
b parameters, therefore, measure the partial elasticity of solar production with respect

to subsidies for households income bin b. Figure 5b plots the estimates of these parameters

for the model and the data. The model fits the empirical partial elasticity of installations

with respect to subsidies across income levels well.

Untargeted Moments We now compare simulated results from the model to data

not targeted in estimation to further assess model validity. The 2015 Residential En-

ergy Consumption Survey (RECS) has income and solar installation status data for 5,700

households across the United States, along with data on other energy-related goods and

behaviors. Appendix Figure A10 shows the percent of households with solar panels by

income quartile from our model simulations and the RECS data.40 The fit is reasonably

40Income in RECS data is presented in income categories. We combine categories such that the bins in
the figure roughly correspond to income quartiles in 2015.
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(a) Panels: Income (b) Partial Elasticity

Figure 5: Panel (a) shows panels per household across percentiles of tract-level income in the model and
data. The red line shows the panels per household in the data, while the black dashed line shows the
simulated panels from the estimated model. Panel (b) shows partial elasticities across income levels in
the model and data. These are estimated using the same set of controls as Figure 4 with census division
fixed effects.

good, though our model does predict lower installation rates for high-income levels than

in the RECS data.

Comparison to Existing Literature Several other studies use diverse methods and

empirical applications to credibly estimate the effect of subsidies on household demand for

solar panels (Hughes and Podolefsky, 2015; Crago and Chernyakhovskiy, 2017; Gillingham

and Tsvetanov, 2019; Colas and Reynier, 2024). We use our estimated model to reproduce

results from those studies, the details of which are in Appendix C.7. For each of these

four studies, our replication is consistent with the results of the respective study.

4 Counterfactuals

4.1 Why are Installations Increasing in Income?

Current subsidies for residential solar panels in the US are highly regressive, as installation

rates are strongly increasing in household income (Borenstein and Davis, 2024). As our

first counterfactual, we use our estimated model to understand the mechanisms driving

this positive correlation between income and installation rates under the current subsidy

scheme.

Five main mechanisms in our model collectively generate a relationship between house-

hold income and installations per homeowner. First, high-income households tend to live

in states with more generous subsidies and higher electricity prices.41 Second, the Federal

41The tract-level correlation between average income and electricity prices is 0.18. The correlations
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Figure 6: Model-Based Decomposition. The graph shows the average number of installations per home-
owner across deciles of household income over various model specifications. See text for details on each
specification.

Investment Tax Credit is nonrefundable, and therefore, low-income households may not

be able to take full advantage of this tax credit because their tax burden is too low. Third,

households face borrowing constraints, and therefore, low-income households may not be

able to afford solar panels despite the long-run monetary benefits. Fourth, high-income

households may have stronger preferences for installations.42 Finally, differences in income

and assets imply different marginal utilities of consumption.

We perform a model-based decomposition to understand the role played by each of

these features in generating the positive relationship between household income and in-

stallations. Specifically, we remove each of these features one by one and re-simulate the

model. All changes to the model specification are cumulative.43 Recall that we only con-

sider homeowners in our analysis Therefore, we plot the relationship between income and

installations per homeowner rather than household.44

The results are displayed in Figure 6. The solid red line shows the baseline case.

Roughly 0.6 percent of homeowners in the bottom income decile install panels compared to

over 3 percent of homeowners in the top decile. We begin our decomposition by removing

all spatial factors and assuming all subsidies, prices, and levels of solar irradiance are

between average income and property taxes, production subsidies, and cost subsidies are 0.11, 0.10, and
0.06, respectively.

42The correlation between income and tract-level college-educated share and democrat share capture
these differences in preferences.

43In Appendix C.9, we perform these modifications individually, rather than cumulatively.
44We show the same graph with installations per household, rather than homeowner, in Appendix C.9.

Homeownership rates are strongly increasing in household income. Therefore, the installation rates per
household, including non-homeowners, increase more strongly in income than those shown here.
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drawn randomly from their respective unconditional distributions. This leads to a slight

increase in installations for poorer households, as states with lower income levels tend to

have less generous subsidies and lower electricity prices.

The non-refundable nature of Federal Investment Tax Credits may play an essential

role in explaining low installation rates for low-income households. We next simulate a

version of the model in which we additionally assume that the Federal Investment Tax

Credit pays in full in the year of installation. This change leads to a large increase in

installations for lower income levels but no change in installations for households with

higher income, who already have a large enough tax burden to receive the full credit in

the year of installation.

Next, we simulate a version of the model in which households additionally do not face

a borrowing constraint and can borrow freely against future income. This change leads

to a large increase in installations for poorer households but no change for higher-income

households, who both face less stringent borrowing constraints and are less likely to need

to borrow to finance solar panels compared to lower-income households. We next remove

the correlation between household income and preferences by setting XColl
ℓ and XPol

ℓ to

the median values in the data. This equalization lowers installation rates for high-income

households. Finally, we remove the role of income directly by setting all household income

levels to the national mean. This fully removes the relationship between income and

installations.

In summary, this decomposition suggests that borrowing constraints and the non-

refundability of the Federal Investment Tax Credit play major roles in generating the

positive relationship between installations and income. Preferences and spatial differences

between prices, subsidies, and sunlight play relatively minor roles.

4.2 Introducing Income-Contingent Subsidies

We now analyze the cost-effectiveness of introducing small income-contingent subsidies

to the current subsidy scheme. Specifically, we calculate the additional solar capacity

per dollar of public funds associated with income-contingent subsidies. To calculate this,

we divide households into 20 income groups. We then simulate installations 1) given

the current system of subsidies and 2) where we also offer small, targeted subsidies for

households of a given income group. We calculate the additional solar capacity per dollar

for that income group as the increase in solar capacity divided by the increase in fiscal

cost. We repeat the process for all income groups. We assume these income-contingent

subsidies are upfront subsidies: they are paid in full at the time of installation.45

45We compare the efficacy of upfront subsidies to flow subsidies in Appendix C.16.
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(a) Additional production per dollar (b) Percent of installations non-additional

Figure 7: Cost-effectiveness of introducing income-contingent subsidies to the current subsidy scheme.
Panel (a) shows the change in solar capacity per dollar of additional fiscal cost associated with introducing
income-contingent subsidies to each income group. Panel (b) shows the percent of income-contingent
subsidy funds received by non-additional households.

The results are presented in Panel (a) of Figure 7. Solar capacity per dollar of public

funds is decreasing in household income. Introducing subsidies targeted at households with

an income of $40,000 leads to an increase of 0.24 kWh of solar electricity per additional

dollar of subsidies. On the other hand, subsidies targeted at high-income households are

two-thirds as cost-effective: subsidies targeted at households with income over $200,000

lead to 0.16 kWh of solar electricity per dollar.

As highlighted in Section 2, a key determinant of the cost-effectiveness of introduc-

ing income-contingent subsidies is the number of non-additional households relative to

additional households. To illustrate how this relationship varies across the income distri-

bution, we calculate the percent of targeted subsidies for each income group received by

households who choose to install panels absent the subsidy increase. Panel (b) of Figure

7 shows the results. The percentage of non-additional households is strongly increasing

in income. For households with an income of $40,000, 45% of targeted subsidy funds go

to households who would already install solar panels absent the targeted subsidies. The

percent of non-additional households is over twice this for high-income households: over

60% subsidies for households with income over $200,000 are received by households who

would already install panels absent the subsidy increase.

4.3 Production-Maximizing Subsidies

Next, we consider a federal government that chooses a national income-contingent subsidy

schedule to maximize total solar production subject to the constraint that total govern-

ment spending must be no greater than spending under current subsidies. We hold all

other state and federal subsidies constant and again assume that the government pays
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income-contingent subsidies upfront.46 Note that since this objective does not account

for household utility, we have removed the equity rationale for means-tested subsidies as

there is no motive for the government to redistribute from rich to poor households. In Ap-

pendix C.10, we formalize the government’s problem and derive its first-order conditions.

To solve for the production-maximizing subsidies, we numerically calculate the system of

income-contingent subsidies that satisfy these first-order conditions.

The results are displayed in Table 2 and in Figure 8. Figure 8a presents the production-

maximizing subsidies (solid red line) and the current subsidies (black dotted line) as a

function of income. Specifically, each line shows the average present discounted value of

subsidies a household of a given income level would receive conditional on installing so-

lar panels.47 Moving to the production-maximizing subsidies involves increasing subsidies

for low-income households and decreasing subsidies for high-income households. Under

the production-maximizing schedule, households in the first income quartile receive over

$12,000 in subsidies for an installation. In contrast, households in the top income quartile

receive less than $7,000. Figure 8b shows simulated installations across the income dis-

tribution under both subsidy schemes. Installations increase by over 100% for households

in the first income quartile while installations of households in the top income quartile

decrease by roughly 25%.

As shown in Panel III of Table 2, these changes in subsidies and the profile of instal-

lations lead to a much more equitable distribution of public funds. Switching from the

current subsidy schedule to the production-maximizing subsidy schedule nearly triples the

amount of solar subsidies received by households in the bottom income quartile, from 7.7%

of total subsidies to 22.2%. On the other hand, funds received by households in the top

income quartile drop by half, from 45.1% to 21.6% of total subsidy payments.

Panel IV presents the relative total solar production of the production-maximizing

subsidies. The production-maximizing subsidies increase total solar production by 2.4%

relative to current subsidies with no increase in fiscal cost.

4.4 Welfare-Maximizing Subsidies

We now solve for the schedule of income-contingent subsidies that maximizes the sum of all

households’ lifetime utility subject to the constraint that net costs, which we define as total

46We compare the efficacy of upfront subsidies to flow subsidies in Section C.16. We do not evaluate
the optimality of the overall level of subsidies. Colas and Reynier (2024) find that subsidy levels are
suboptimally high in nearly all US states.

47Current subsidies are increasing in income for two main reasons. First, because the Federal Investment
Tax Credit is nonrefundable, households with low income tax burdens cannot receive the full value of an
upfront subsidy. Second, many subsidies pay a fraction of the cost of installation, and higher-income
households tend to install larger, and therefore more expensive, solar panel systems.
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(a) Average Subsidy (b) Panels per Household

Figure 8: The figure on the left shows the average present discounted value of subsidies received for an
installation across income levels under various subsidy schemes. The figure on the right shows the average
panels per household across income levels under these same subsidy schemes.

(1) (2) (3)
Prod Utility

Baseline Max Max
I. Production per HH

Income Q1 20.3 42.9 61.7
Income Q2 50.1 65.1 63.6
Income Q3 77.9 77.6 70.6
Income Q4 120.2 92.6 83.4
Overall 68.8 70.4 70.2

II. Subsidy Generosity ($1000s)
Income Q1 8.1 12.3 14.4
Income Q2 9.3 11.5 11.3
Income Q3 9.8 9.8 8.7
Income Q4 10.4 6.3 4.7

III. % of Public Funds Received
Income Q1 7.1% 20.6% 33.5%
Income Q2 18.4% 28.5% 27.4%
Income Q3 29.0% 28.7% 23.7%
Income Q4 45.5% 22.2% 15.3%

IV. Relative Production 100.0 102.4 102.0

Table 2: Panel I shows the average annual solar capacity in kWh per household in each income quartile.
Panel II shows the average present discounted value of subsidies a household from each income quartile
would receive for a solar installation. Panel III shows the percentage of solar subsidies received by each
income quartile. We measure these subsidies as the present value of all state and federal subsidies received
by households in a given income quartile as a fraction of the total amount received across all households.
Panel IV shows total solar production. We scale total production under the baseline simulation to 100.
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fiscal costs less environmental benefits, must not exceed the current level. To calculate

environmental benefits, we estimate NERC-region-level marginal damages of electricity

production during daytime hours using the estimation strategy and data from Holland

et al. (2020). Our estimates measure the environmental damages of greenhouse gases

and pollutants that fossil-fuel power plans would otherwise emit. We provide additional

details in Appendix C.8. We formalize the maximization problem and present the first-

order conditions in Appendix C.14.

The results are displayed in Column 3 of Table 2 and in the magenta dotted lines

of Figure 8. The utility-maximizing subsidies are strongly decreasing in income, as the

decreasing marginal utility of income gives the government an incentive to redistribute

resources from higher-income households to lower-income households. Households in the

first quartile of the income distribution receive 14.4 thousand dollars on average for a

solar installation, while households in the top income quartile receive less than 5 thousand

dollars. Switching to this welfare-maximizing subsidy scheme leads to a 2.0% increase in

solar production.

5 Robustness and Additional Results

5.1 Stochastic Income

In this section, we consider a version of our model in which household income follows a

linear Gaussian process with both persistent and transitory shocks, a common way of mod-

eling stochastic earning processes in the macro and labor literature (see, e.g., Storeslet-

ten, Telmer, and Yaron, 2004; Meghir and Pistaferri, 2004; Guvenen, 2009; Heathcote,

Storesletten, and Violante, 2010; Krueger, Mitman, and Perri, 2016; Guvenen et al., 2021).

We first give an overview of the model before showing how stochastic income affects our

main results—additional model details and results are in Appendix C.15.

Model Let zit denote the persistent component of household i’s income. We assume this

follows an AR(1) process as

zit = ρzit−1 + ηit,

where ρ is a parameter that dictates the persistence of income, and ηit is a persistent

income shock drawn from a normal distribution with mean zero and variance σ2
η.

Log household earnings in year t are given by

log yit = zit + εit,
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(a) Stochastic Income (b) Borrowing Constraints

Figure 9: The figure on the left shows the average subsides under the current subsidy scheme, with the
production-maximizing subsidy scheme in a model with a stochastic income process and the production-
maximizing subsidy scheme in the baseline model. The figure on the right shows the average subsides
under the current subsidy scheme, the production-maximizing subsidy scheme in a model an alternative
household discount rate, and the production-maximizing subsidy scheme in the baseline model. For each
alternative specification, we re-estimate the model and re-solve for the production-maximizing subsidies.

where εit is a normally distributed transitory shock with mean zero and variance σ2
ε . As

is standard, we assume households know the distributions of εit and ηit but only learn

the values of the two shocks in year t. Households make installation, consumption, and

savings decisions to maximize lifetime expected utility by integrating over the distribution

of future shocks.

We calibrate the parameters ρ, σ2
ε and σ2

η using the estimates from Storesletten, Telmer,

and Yaron (2004), who estimate these parameters using earnings data from the Panel

Study of Income Dynamics. We then re-estimate the remaining parameters using the

indirect inference procedure described in Section 3.3. We present the estimated parameters

and model fit in Appendix C.15.2. Both the estimated parameters and model fit results

are very similar to those with the baseline model.

Results The production-maximizing subsidy schedules in the the model with stochastic

income is displayed in Figure 9a. The production-maximizing subsidy schedules are very

similar to that in the baseline model. In Appendix C.15.2, we present the efficient subsidies,

distribution of installations, and production levels associated with welfare-maximizing

subsidies. The efficient subsidy schemes, distribution of installations, and production

levels are very similar to those under the baseline model.
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5.2 Alternative Household Discount Rate

In our baseline model, we assumed that households’ discount rate was β = 1
1+r

, where r is

the market interest rate.48 However, De Groote and Verboven (2019) show that households

heavily discount the future monetary benefits associated with solar panel installations.

Here, we re-estimate the model with stochastic income and re-calculate optimal subsidies

when households use a discount rate of β = 0.85, based on the results from De Groote and

Verboven (2019). Figure 9b shows the optimal subsidies under this alternative discount

rate, which remain strongly decreasing in income.

5.3 Maximizing Environmental Benefit

Our main results have focused on a government that maximizes residential solar produc-

tion subject to a fiscal cost constraint. However, a large literature highlights that the

environmental benefits of solar panels vary dramatically depending on where the solar

panels are installed.49 Therefore, the subsides which maximize solar production are not

necessarily the best for the environment.

In Appendix C.11, we solve for the income-contingent subsidy schedule that maxi-

mizes environmental benefits. As in Section 4.4, we calculate environmental benefits of

solar panels by estimating NERC-region-level marginal damages of electricity production

during daytime hours using the estimation strategy and data from Holland et al. (2020).

We provide additional details in Appendix C.8. The benefit-maximizing schedule is very

similar to the production-maximizing schedule and leads to a 2.4% increase in environ-

mental benefits of residential solar nationally.

5.4 Lower Installation Prices

The cost of residential solar installations has decreased substantial over the past two

decades (Barbose et al., 2023). To understand how efficient income-contingent subsidy

schedules would adjust if installation prices were significantly lower than current levels, we

calculate the production-maximizing subsidies assuming a 50% reduction in installation

costs in Appendix C.12. The production-maximizing subsidies with lower installation

prices are still strongly decreasing in income.

48We follow Sexton et al. (2021) and set r = .05 in our baseline model.
49See e.g. Siler-Evans et al. (2013), Graff Zivin, Kotchen, and Mansur (2014), Holland et al. (2016), Mill-

stein et al. (2017), Callaway, Fowlie, and McCormick (2018), Holland et al. (2020), Brown and O’Sullivan
(2020), Lamp and Samano (2023) Borenstein and Bushnell (2022), Sexton et al. (2021), and Colas and
Reynier (2024).

35



6 Conclusion

We study the design of income-contingent subsidies for residential solar panels. We show

robust reduced-form evidence that the partial-elasticity of solar production with respect

to subsidies is decreasing in income, suggesting that means-tested subsidies could induce

greater solar production per dollar of public funds compared to income-neutral subsi-

dies. Simulations from a quantitative model reveal that optimally set income-contingent

subsidies lead to a much more equitable distribution of public funds and an increase in

residential solar production. Therefore, means-tested solar subsidies are justified on both

equity and cost-efficiency grounds.

Future work could extend the empirical exercise here to other green products, such as

energy-efficient appliances or heat pumps. The equity-efficiency trade-offs associated with

subsidies for heat pumps are likely very different than those for solar panels subsidies,

as heat pump adoption rates do not correlate strongly with income (Davis, 2023). It

would also be interesting to consider a government that can offer financing programs

for solar panels in addition to means-tested subsidies. These financing programs would

alleviate borrowing constraints for low-income households, which would change the benefits

of providing income-contingent subsidies to those households. We leave these questions

for future research.
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A Theoretical Appendix

A.1 Proof of Proposition 1

Consider a variation of s denoted by δs. We are interested in subsidy variations that are

cost-neutral, such that

dCost =

∫ y

y

δCost

δs (y)
δs (y) dy =

∫ y

y

δs (y)

(
∂Ky

∂s(y)
s̄+Ky(s̄)

)
dy = 0 (12)

and that are progressive, meaning that

(y′′ − y′) (δs(y′′)− δs(y′)) < 0 (13)

for y′′ ̸= y′. The total change in production associated with the variation δs is equal to

dProd =

∫ y

y

∂Ky

∂s(y)
δs (y) dy.

We can think of the change in cost associated with δs as the costs from additional

households, who each receive s̄, plus the costs from non-additional households, who each

receive an additional δs(y). Explicitly, we can rewrite dCost as the current subsidy level

times the change in production multiplied by a constant:

dCost = s̄× dProd+ A, (14)

where we define ∫ y

y

δs (y)Ky(s̄)dy ≡ A.

Intuitively, A gives the change in cost associated with non-additional households, while

s̄× dProd gives the change in cost associated with additional households. The change in

production will be large relative to cost when the cost to non-additional households, given

by A, is small, all else equal. We can rewrite A in terms of cost-effectiveness as

A =

∫ y

y

δs (y)
∂Ky

∂s(y)
η−1(y)dy.

Since δs is decreasing in income, and since δs is a cost-neutral variation, there must

exist some “cutoff” income level ỹ such that δs(y) ≥ 0 for y ≤ ỹ and δs(y) ≤ 0 for

y > ỹ. We can rewrite A as an integral over households with income below ỹ (who receive

subsidy increases), plus an integral over households with income above ỹ (who receive

1



subsidy reductions):

A =

∫ ỹ

y

δs (y)
∂Ky

∂s(y)
η−1(y)dy +

∫ y

ỹ

δs (y)
∂Ky

∂s(y)
η−1(y)dy. (15)

Let η(ỹ) denote the cost-effectiveness associated with this cutoff income level ỹ.

We now consider two cases. First, we consider the case in which η is decreasing in

income. Second, we consider the case in which η is increasing in income.

Case 1: η Decreasing In Income Assume η is weakly decreasing in income and

η(y) > η(y). Thus, it must be the case that η−1(y) ≤ η−1(ỹ) for y ≤ ỹ and η−1(y) ≥ η−1(ỹ)

for y > ỹ with at least one of these two inequalities holding strictly. As δs (y) ≥ 0 for

y ≤ ỹ, it must be that∫ ỹ

y

δs (y)
∂Ky

∂s(y)
η−1(y)dy ≤

∫ ỹ

y

δs (y)
∂Ky

∂s(y)
η−1(ỹ)dy. (16)

Further, since δs (y) < 0 for y > ỹ, we know that∫ y

ỹ

δs (y)
∂Ky

∂s(y)
η−1(y)dy ≤

∫ y

ỹ

δs (y)
∂Ky

∂s(y)
η−1(ỹ)dy. (17)

At least one of the above inequalities must hold strictly, because either η−1(y) > η−1(ỹ)

for y ≤ ỹ or η−1(y) < η−1(ỹ) for y > ỹ.

Using these inequalities in equations (16) and (17), we can rewrite equation (15) as

A =

∫ ỹ

y

δs (y)
∂Ky

∂s(y)
η−1(y)dy +

∫ y

ỹ

δs (y)
∂Ky

∂s(y)
η−1(y)dy <∫ ỹ

y

δs (y)
∂Ky

∂s(y)
η−1(ỹ)dy +

∫ y

ỹ

δs (y)
∂Ky

∂s(y)
η−1(ỹ)dy. (18)

We can rewrite this inequality as

A < η−1(ỹ)

(∫ y

y

δs (y)
∂Ky

∂s(y)
dy

)
= η−1(ỹ)× dProd.

Adding s̄× dProd, and noting the cost-neutrality constrant, yields

s̄× dProd+ A︸ ︷︷ ︸
=dCost=0

<
(
s̄+ η−1(ỹ)

)
dProd.
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Finally, dividing both sides by (s̄+ η−1(ỹ)) > 0 yields

dProd > 0.

Case 2: η Increasing In Income Assume η is weakly increasing in income and η(y) <

η(y). Thus, it must be the case that η−1(y) ≥ η−1(ỹ) for y ≤ ỹ and η−1(y) ≤ η−1(ỹ) for

y > ỹ with one of these two inequalities holding strictly. Following the logic from the Case

1, we can then show that

A =

∫ ỹ

y

δs (y)
∂Ky

∂s(y)
η−1(y)dy +

∫ y

ỹ

δs (y)
∂Ky

∂s(y)
η−1(y)dy >∫ ỹ

y

δs (y)
∂Ky

∂s(y)
η−1(ỹ)dy +

∫ y

ỹ

δs (y)
∂Ky

∂s(y)
η−1(ỹ)dy. (19)

Following the same algebriac steps as the previous case yields

s̄× dProd+ A︸ ︷︷ ︸
=sCost=0

>
(
s̄+ η−1(ỹ)

)
dProd

which implies that dProd < 0 since (s̄+ η−1(ỹ)) > 0.

A.2 Production-Maximizing Subsidy Schedule in General Model

Consider a government which chooses a subsidy schedule to maximize total solar produc-

tion subject to an exogenously set budget constraint. Specifically, the government chooses

a subsidy function s to maximize ∫ y

y

Ky (s(y)) dy

subject to the constraint that ∫ y

y

Ky (s(y)) s(y)dy ≤ C

where C is the maximum fiscal cost. We can write the government’s program as the

Lagrangian:

max

∫ y

y

Ky (s(y)) dy − λ

(∫ y

y

Ky (s(y)) s(y)dy − C

)
,

where λ is the Lagrange multiplier.
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The optimal subsidy function must satisfy the government’s first order conditions. This

implies
∂Ky

∂s(y)
(s⋆ (y))− λ

(
∂Ky

∂s(y)
(s⋆ (y))× s⋆ (y)−Ky (s

⋆ (y))

)
= 0

for all income levels y, where ∂Ky

∂s(y)
(s⋆ (y)) is the derivative of Ky with respect to subsidies

evaluated at the optimal subsidy level s⋆ (y). Dividing both sides by λKy (s
⋆ (y)) yields

η⋆(y)

(
1

λ
− s⋆ (y)

)
− 1 = 0,

where η⋆(y) ≡
∂Ky
∂s(y)

(s⋆(y))

Ky(s⋆(y))
is the cost-effectiveness of a subsidy increase targeted at income

level y given the production-maximizing subsidy schedule.

Rearranging the above equation yields

s⋆ (y) =
1

λ
− 1

η⋆(y)
.

Therefore, if η⋆ is decreasing in income, then s⋆ must also decrease in income.

A.3 Tract-Level Elasticities

Let i index household types and let ki (s) denote production by household type i as a

function of subsidies s. Total solar production in tract ℓ is given by

Kℓ =

∫
ki (s) dfℓ (i)

where fℓ (i) is the density of household type i in tract ℓ.

We are interested in the partial elasticity of Kℓ with respect to subsidies s. This is

given by

ηℓ ≡
∂Kℓ

∂s

Kℓ

=

∫
∂ki
∂s
dfℓ (i)

Kℓ

. (20)

Letting ηi ≡
∂ki
∂s

ki
denote the household-level partial elasticity of solar production with

respect to subsidies, we can rewrite (20) as

ηℓ =

∫
kiηidfℓ (i)∫
kidfℓ (i)

.

Therefore, the tract-level elasticity, ηℓ, is equal to the production-weighted average partial

elasticity of all households in the tract.
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Figure A1: Distances to nearest border by census tract.

B Reduced-Form Appendix

B.1 Non-Reweighted Border Discontinuities in Subsidy Gen-

erosity and Log Production per Capita

Here, we present border discontinuity graphs for subsidy generosity and log production

per capita where we do not reweight observations as in our main specification. As before,

we define a tract’s location to the nearest border as the positive distance to the border for

tracts on the side of the border with more generous subsidies and the negative distance

to the border for tracts on the side with less generous subsidies. Figure A1 shows the

distance to the nearest border for each census tract, with the less generous side of the

border in brown and the more generous side in green. We categorize tracts into 10-mile-

wide bins based on this location relative to the border and regress the variable in question

(either subsidy generosity or log production per capita) on state-border fixed effects and

fixed effects for these location bins. We run these regressions separately for high- and

low-income tracts.

Figure A2a plots the estimated location-bin fixed effects for a regression on subsidy

generosity for high-income and low-income tracts. Positive values on the X-axis represent

tracts on the side of the border with more generous subsidies, and negative values on the

X-axis represent tracts on the side with less generous subsidies.50 Mechanically, subsidy

50The regressions omit the location-bin fixed effect for the location bin nearest to the border on the
less generous subsidy side. We can, therefore, interpret these estimated location bin fixed effects as the
conditional average of subsidy generosity in a given location bin relative to this omitted bin.
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(a) Subsidy Generosity (b) Log Production Per Capita

Figure A2: Border Discontinuities in Subsidy Generosity and Log Production per Capita without
Reweighting. The graph plots estimated location-bin fixed effects from a regression of subsidy generosity
(Panel (a)) or log production per capita (Panel (b)) separately for high-income (orange) tracts and low-
income (green) tracts on border fixed effects and location-bin fixed effects. Positive values on the X-axis
represent households on the side of the border with more generous subsidies, and negative values on the
X-axis indicate the side of the border with less generous subsidies.

generosity for both groups sharply increases as we move to the side with more generous

subsidies. The increase in subsidy generosity is larger for high-income tracts, revealing that

high-income tracts tend to be located around borders with larger differences in subsidy

generosity. Figure A2a plots the estimated location-bin fixed effects for a regression on

log production per capita for high-income and low-income tracts.

Taken together, the two graphs show that crossing borders from a state with less gen-

erous subsidies to a state with more generous subsidies is associated with both larger sub-

sidy increases and larger production rate increases for high income tracts. The reweighting

procedure we utilize in Section 3.2 allows us to compare discontinuities in log production

across borders with consistent weights across low-income and high-income regressions.

B.2 Full coefficient tables

Table A1 reports all coefficients for the specifications in Table 1.

B.3 Linear specification without border discontinuities

Here, we estimate the specification where the partial elasticity of solar production with

respect to subsidies varies linearly in log income using all census tracts. The first two

columns of Table A2 show the results. The second column, with division fixed effects,

suggests that a 1 cent per KWh increase in subsidies leads to a nearly 6.5 percent increase

in solar production per capita. The following two columns of Table A2 have estimates

of equation (3), where we specify that cost-effectiveness is linear in log income. We have

again “de-medianed” log income by subtracting the median log income level from our log

6



Table A1: Effect of Subsidies on Log Production per Capita

Border Polynomial Deg. 0 3 5

Bandwidth 40 mi 80 mi 40 mi 80 mi 40 mi 80 mi
Model: (1) (2) (3) (4) (5) (6)

Variables
Constant -3.40∗ -4.13∗∗∗ -4.53∗∗∗ -2.53∗ -3.53∗∗∗ -3.33∗∗∗

(1.96) (1.53) (1.19) (1.28) (1.09) (1.14)
Subsidy 6.04∗∗∗ 6.53∗∗∗ 4.31∗∗ 4.74∗∗ 3.57∗ 4.02∗∗

(0.949) (1.08) (2.01) (1.93) (2.11) (1.95)
Log Income -0.323 -0.371 -0.173 -0.239 -0.226 -0.274

(0.228) (0.252) (0.172) (0.249) (0.177) (0.208)
Elec. Price -39.4 -43.9 -0.077 -16.8 -12.9 -16.9

(27.1) (31.3) (26.1) (34.5) (25.2) (25.9)
Solar Irradiance 1.26∗∗∗ 1.37∗∗∗ 0.988∗∗∗ 0.728∗∗∗ 0.844∗∗∗ 0.771∗∗∗

(0.415) (0.326) (0.245) (0.207) (0.237) (0.223)
Percent College 0.877∗∗∗ 1.02∗∗∗ 0.965∗∗∗ 1.10∗∗∗ 0.954∗∗∗ 1.05∗∗∗

(0.175) (0.157) (0.164) (0.140) (0.167) (0.136)
Percent Owner 0.329 0.267 0.222 0.170 0.212 0.116

(0.346) (0.259) (0.333) (0.250) (0.337) (0.247)
Percent Democrat 0.334 0.543∗ 0.213 0.444∗ 0.234 0.373

(0.370) (0.273) (0.391) (0.251) (0.376) (0.258)
Population Density -5.23∗∗∗ -5.27∗∗∗ -5.57∗∗∗ -5.43∗∗∗ -5.65∗∗∗ -5.64∗∗∗

(0.449) (0.440) (0.496) (0.452) (0.496) (0.449)
Population Density sq 2.17∗∗∗ 2.15∗∗∗ 2.33∗∗∗ 2.26∗∗∗ 2.36∗∗∗ 2.33∗∗∗

(0.257) (0.242) (0.286) (0.253) (0.277) (0.245)
Subsidy × Log Income -1.50∗∗ -1.92∗∗ -1.76∗∗∗ -1.92∗∗ -2.02∗∗∗ -2.07∗∗∗

(0.704) (0.913) (0.428) (0.845) (0.450) (0.681)
Elec. Price × Log Income 3.96 4.59 2.68 3.32 3.52∗∗ 3.99∗∗

(2.52) (2.82) (1.66) (2.55) (1.68) (1.98)

Fit statistics
Observations 20,187 30,410 20,187 30,410 20,187 30,410
R2 0.48 0.49 0.55 0.55 0.55 0.56

Clustered (State) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Estimates of coefficients from Equation (4). Sample is limited to tracts within either 40
or 80 miles bandwidths to state borders. All regressions include border-specific
polynomials in location relative to border.
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Figure A3: Robustness of border discontinuity estimates to different bandwidths and polynomial degrees.

income variable. Using estimates from column 4, a 1 cent per-kWh increase in subsidies

is associated with a 7.3% increase in solar production per capita for a tract at the median

income level, and, consistent with our border discontinuity result, is decreasing in income.

The same 1 cent per-kWh subsidy increase is associated with only a 5.1’% increase in

solar production per capita for a tract at the 90th percentile of income distribution. The

empirical partial elasticity of solar production with respect to subsidies for tracts at the

median income level is 44 percent higher than the partial elasticity for tracts at the 90th

percentile income level—somewhat larger than our border discontinuity result.

B.4 Robustness

Border Discontinuity Bandwith and Polynomial Degree In our main specifica-

tion, we use a border discontinuity with a bandwidth of 40 miles, with border fixed effects

interacted with 3rd degree polynomials in distance from the border. Figure A3 shows esti-

mates using bandwidths between 20 and 100 miles and polynomials ranging from degree 0

(just border fixed effects) to 5. The results are similar for all but the smallest bandwidths.

Historically Adjusted subsidies Table A3 replicates Table 1 using the historically

adjusted measure of subsidies from Sexton et al. (2021). The results are slightly weaker

than our main results, but the weight of the evidence still implies that cost-effectiveness

is decreasing with income. For the specifications with statistically significant coefficients,

the partial elasticity of solar production with respect to subsidies is 18 to 31% lower for

tracts at the 90th income percentile relative to tracts at the median income. These values

fall within the range of those from our main specification in Table 1.

Controls for Other State Solar Policies A threat to identification in our border

discontinuity models is a change in other policies across state borders that affects house-

8



Table A2: Effect of Subsidies on Log Production per Capita

Model: (1) (2) (3) (4)

Variables
Subsidy 4.67∗∗∗ 6.28∗∗∗ 5.51∗∗∗ 7.34∗∗∗

(1.49) (1.22) (1.70) (1.33)
Log Income -0.250 -0.405 -0.208 -0.356

(0.443) (0.435) (0.342) (0.350)
Population Density -5.46∗∗∗ -5.47∗∗∗ -5.50∗∗∗ -5.52∗∗∗

(0.522) (0.416) (0.528) (0.433)
Population Density sq 2.30∗∗∗ 2.32∗∗∗ 2.32∗∗∗ 2.34∗∗∗

(0.374) (0.325) (0.373) (0.330)
Percent College 0.384 0.463∗ 0.430 0.511∗

(0.297) (0.258) (0.293) (0.260)
Percent Owner 0.441 0.470 0.460 0.489

(0.334) (0.330) (0.340) (0.337)
Percent Democrat 0.983∗∗∗ 0.790∗∗∗ 0.951∗∗∗ 0.750∗∗

(0.256) (0.278) (0.258) (0.282)
Elec. Price -58.0 -71.9∗∗ -76.7∗∗ -93.9∗∗∗

(39.4) (34.3) (33.7) (25.8)
Solar Irradiance 1.44∗∗∗ 1.52∗∗∗ 1.45∗∗∗ 1.53∗∗∗

(0.256) (0.304) (0.259) (0.304)
Elec. Price × Log Income 6.20∗ 7.18∗∗ 7.87∗∗∗ 9.12∗∗∗

(3.49) (3.21) (2.91) (2.39)
Subsidy × Log Income -3.69∗∗∗ -4.23∗∗∗

(1.19) (1.02)

Fixed-effects
Region Yes Yes
Division Yes Yes

Fit statistics
Observations 49,010 49,010 49,010 49,010
R2 0.57 0.58 0.57 0.58
Within R2 0.35 0.34 0.35 0.34

Clustered (State) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1
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Table A3: Effect of Historical Subsidies on Log Production per Capita

Border Polynomial Deg. 0 3 5

Bandwidth (mi) 40 mi 80 mi 40 mi 80 mi 40 mi 80 mi
Model: (1) (2) (3) (4) (5) (6)

Variables
Hist. Subsidy 4.87∗∗∗ 4.05∗ 3.41∗ 4.49∗∗∗ 3.94∗∗ 3.45∗∗

(0.827) (2.02) (1.97) (0.866) (1.82) (1.69)
Hist. Subsidy × Log Income 0.113 -1.16∗∗∗ -1.43∗∗∗ -0.167 -1.32 -1.54∗∗

(0.783) (0.432) (0.421) (0.942) (0.879) (0.705)

Fit statistics
Observations 20,187 20,187 20,187 30,410 30,410 30,410
R2 0.48 0.55 0.56 0.48 0.55 0.45

Clustered (State) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Estimates of coefficients from Equation (4) using historically adjusted subsidies. Sample
is limited to tracts within either 40 or 80 miles bandwidths to state borders. All
regressions include controls for tract-level income, electricity prices, electricity prices
interacted with income, solar irradiance, population density and population density
squared, a battery of tract-level demographic measures, and border-specific polynomials
in location relative to border.

hold solar installation decisions. We gather data on other state-level policies related to

solar panels from DSIRE that are not monetary subsidies. We then count the number of

programs in each state split into three categories: financing, access rules, and building in-

centives.51 In addition to using the counts of policies, we also run models using indicators

for the presence of these policies.

Tables A4 and A5 replicate Table 1 adding controls for counts of DSIRE policies and

for indicators for the presence of DSIRE policies. The results are similar to our main

models. The coefficient on the interaction between subsidies and log income remains very

stable across all of the DSIRE specifications. The coefficient on subsidies—reflecting the

partial elasticity of installations with respect to subsidies for a tract with median log

income—does increase in some specifications. However, these partial elasticities are never

statistically significantly different at the 5 percent level from that of our baseline model

without DSIRE controls.

51Financing are policies with labels of “Loan Program” and “PACE Financing” in DSIRE, access are
solar policies with labels of “Solar/Wind Access Policy” and “Solar/Wind Permitting Standards”, and
building incentives are policies with the label of “Building Energy Codes” and “Green Building Incentives”
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Table A4: Effect of Subsidies on Log Production per Capita with DSIRE count controls

Border Polynomial Deg. 0 3 5

Bandwidth (mi) 40 mi 80 mi 40 mi 80 mi 40 mi 80 mi
Model: (1) (2) (3) (4) (5) (6)

Variables
Subsidy 7.52∗∗∗ 6.35∗∗∗ 7.85∗∗∗ 8.28∗∗∗ 7.03∗∗∗ 7.78∗∗∗

(1.39) (2.30) (2.53) (1.51) (2.30) (2.44)
Subsidy × Log Income -1.44∗ -1.82∗∗∗ -2.07∗∗∗ -1.89∗∗ -1.94∗∗ -2.11∗∗∗

(0.717) (0.425) (0.449) (0.926) (0.847) (0.681)
Count DSIRE financing 0.262∗∗∗ 0.126 0.207 0.252∗∗∗ 0.216∗ 0.225

(0.065) (0.130) (0.147) (0.070) (0.112) (0.138)
Count DSIRE access 0.062 -0.088 -0.185∗ −9.65× 10−5 -0.042 -0.080

(0.088) (0.111) (0.107) (0.093) (0.109) (0.113)
Count DSIRE building -0.074 -0.091 -0.212 -0.017 -0.025 -0.262

(0.127) (0.218) (0.142) (0.132) (0.253) (0.166)

Fit statistics
Observations 20,187 20,187 20,187 30,410 30,410 30,410
R2 0.49 0.55 0.56 0.49 0.55 0.56

Clustered (State) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1
Estimates of coefficients from Equation (4) adding DSIRE count controls. Sample is
limited to tracts within either 40 or 80 miles bandwidths to state borders. All regressions
include controls for tract-level income, electricity prices, electricity prices interacted with
income, solar irradiance, population density and population density squared, a battery of
tract-level demographic measures, and border-specific polynomials in location relative to
border.
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Table A5: Effect of Subsidies on Log Production per Capita with DSIRE indicator controls

Border Polynomial Deg. 0 3 5

Bandwidth (mi) 40 mi 80 mi 40 mi 80 mi 40 mi 80 mi
Model: (1) (2) (3) (4) (5) (6)

Variables
Subsidy 6.99∗∗∗ 6.78∗∗∗ 7.98∗∗∗ 8.06∗∗∗ 7.67∗∗∗ 9.07∗∗∗

(1.51) (2.15) (2.55) (1.65) (2.13) (2.26)
Subsidy × Log Income -1.42∗ -1.83∗∗∗ -2.08∗∗∗ -1.90∗ -1.96∗∗ -2.09∗∗∗

(0.760) (0.423) (0.448) (0.948) (0.841) (0.674)
Has DSIRE financing 0.301∗∗∗ 0.231 0.314 0.351∗∗∗ 0.411∗∗ 0.409∗

(0.092) (0.194) (0.195) (0.101) (0.193) (0.219)
Has DSIRE access 0.097 -0.125 -0.189 -0.089 -0.155 -0.224

(0.127) (0.136) (0.167) (0.131) (0.138) (0.153)
Has DSIRE building -0.049 -0.257 -0.482∗ 0.012 -0.095 -0.473∗

(0.196) (0.238) (0.246) (0.201) (0.248) (0.257)

Fit statistics
Observations 20,187 20,187 20,187 30,410 30,410 30,410
R2 0.49 0.55 0.57 0.49 0.55 0.56

Clustered (State) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Estimates of coefficients from Equation (4) adding DSIRE indicator controls. Sample is
limited to tracts within either 40 or 80 miles bandwidths to state borders. All regressions
include controls for tract-level income, electricity prices, electricity prices interacted with
income, solar irradiance, population density and population density squared, a battery of
tract-level demographic measures, and border-specific polynomials in location relative to
border.
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Net Metering One concern might be that the availability of a net-metering policy

significantly changes the financial incentives to install solar panels. In 2017, all but six

states had net-metering policies in place.52 Table A6 replicates Table 1 restricted to only

states that had net metering in 2017. These results are qualitatively similar to our main

specification, generally becoming marginally stronger.
Table A6: Effect of Subsidies on Log Production per Capita, Net Metering States Only

Border Polynomial Deg. 0 3 5

Bandwidth (mi) 40 mi 80 mi 40 mi 80 mi 40 mi 80 mi
Model: (1) (2) (3) (4) (5) (6)

Variables
Subsidy 6.14∗∗∗ 4.30∗∗ 3.62∗ 6.62∗∗∗ 4.81∗∗ 3.98∗∗

(0.970) (2.01) (2.13) (1.11) (1.94) (1.96)
Subsidy × Log Income -1.74∗∗ -1.93∗∗∗ -2.27∗∗∗ -2.23∗∗ -2.30∗∗ -2.35∗∗∗

(0.744) (0.441) (0.437) (0.963) (0.854) (0.675)

Fit statistics
Observations 18,722 18,722 18,722 27,507 27,507 27,507
R2 0.49 0.56 0.56 0.50 0.56 0.58

Clustered (State) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Estimates of coefficients from Equation (4) restricted to net metering states. Sample is
limited to tracts within either 40 or 80 miles bandwidths to state borders. All regressions
include controls for tract-level income, electricity prices, electricity prices interacted with
income, solar irradiance, population density and population density squared, a battery of
tract-level demographic measures, and border-specific polynomials in location relative to
border.

Alternative Controls and Fixed Effects for Nonlinear Specifications Our main

results include demographic controls and census division fixed effects. Figures A4 shows

robustness to alternative fixed effects and omitting the demographic controls. We show

just the income spline specification for simplicity, but results are similar across different

means of allowing the marginal effect of subsidies to vary by income level. Adding controls

and more refined fixed effects makes our results marginally stronger.

Alternative Outcomes We derive cost-effectiveness using production per capita as the

outcome of interest. Here, we explore robustness to different outcome variables that we

could have also used to derive cost-effectiveness—counts of residential solar installations

52Non-net metering states are Alabama, Idaho, South Dakota, Tennessee, Texas, and Vermont.
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Figure A4: Cost-effectiveness using production for different controls and fixed effects.
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and residential solar panels. Table A7 shows results for the same specifications as Table

1, but with log panels per capita as the outcome. Figure A5 shows the robustness of

these border discontinuity results for these alternative outcomes across all bandwidths

and polynomial degrees. Figures A6 and A7 demonstrate that the partial elasticity of

subsidies with respect to either of these alternative outcomes is also decreasing in income

when we use the nonlinear specifications and all census tracts.
Table A7: Effect of Subsidies on Log Panels per Capita

Border Polynomial Deg. 0 3 5

Bandwidth (mi) 40 mi 80 mi 40 mi 80 mi 40 mi 80 mi
Model: (1) (2) (3) (4) (5) (6)

Variables
Subsidy 6.04∗∗∗ 6.53∗∗∗ 4.31∗∗ 4.74∗∗ 3.57∗ 4.02∗∗

(0.949) (1.07) (2.01) (1.93) (2.11) (1.95)
Subsidy × Log Income -1.50∗∗ -1.92∗∗ -1.76∗∗∗ -1.92∗∗ -2.02∗∗∗ -2.07∗∗∗

(0.703) (0.912) (0.428) (0.845) (0.450) (0.681)

Fit statistics
Observations 20,187 30,410 20,187 30,410 20,187 30,410
R2 0.48 0.48 0.54 0.54 0.39 0.55

Clustered (State) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Estimates of coefficients from Equation (4). Sample is limited to tracts within either 40
or 80 miles bandwidths to state borders. All regressions include controls for tract-level
income, electricity prices, electricity prices interacted with income, solar irradiance,
population density and population density squared, a battery of tract-level demographic
measures, counts of other state-level solar policies, and border-specific polynomials in
location relative to border.

Alternative Models Since installations are a count variable, we estimate a Poisson

model limiting to tracts that only have positive installations. Figure A8 shows results

using evenly spaced bins by log income. Our results are qualitatively unchanged.

B.5 Estimating Cost-Effectiveness with Zero Production Tracts

Our main specification only includes tracts with positive solar production since it requires

taking the log of production as the outcome variable. However, about a quarter of all

census tracts have no residential solar installations in the Deepsolar data, representing

about 21 percent of the US population. Here, we explore whether our focus on tracts with

positive production affects our conclusions on cost-effectiveness.
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Figure A5: Robustness of border discontinuity model to alternative outcomes
(a) Log installations per capita

(b) Log panels per capita

Figure A6: Installations per capita measure of cost-effectiveness.

Colors show the results for different manners of allowing the marginal effect of subsidies to vary across
income levels, all of which are estimated relative to median income: income bins are 11 bins evenly spaced
in log income, income deciles are based on national income distribution, splines are cubic b-splines with
7 knots evenly spaced based on population weighted income, and log income. Demographic, price, and
solar controls and division fixed effects included in all regressions. Standard errors are clustered by state.
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Figure A7: Panels per capita measure of cost-effectiveness.

Colors show the results for different manners of allowing the marginal effect of subsidies to vary across
income levels, all of which are estimated relative to median income: income bins are 11 bins evenly spaced
in log income, income deciles are based on national income distribution, splines are cubic b-splines with
7 knots evenly spaced based on population weighted income, and log income. Demographic, price, and
solar controls and division fixed effects included in all regressions. Standard errors are clustered by state.

Figure A8: Installations modelled with a Poisson regression.

(a) Installations as outcome, bins in log income. (b) Installations as outcome, splines over income.
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Consider a model where the expected solar production in a given tract is equal to the

probability the tract has positive solar production multiplied by the solar production con-

ditional on having positive production. Concretely, let Pℓ denote the probability a tract ℓ

has strictly positive solar panels, and let K̂ℓ denote the tract’s solar production conditional

on having a strictly positive number of solar panels. Expected solar production in tract ℓ

is therefore given by K̄ℓ = PℓK̂ℓ. The partial elasticity of expected solar production with

respect to subsidies is then given by

∂ log K̄ℓ

∂sℓ
=

∂ log K̃ℓ

∂sℓ︸ ︷︷ ︸
Intensive Margin

+
∂Pℓ

∂sℓ

1

Pℓ︸ ︷︷ ︸
Extensive Margin

.

Therefore, the partial elasticity of solar production is given by the sum of 1) the partial

elasticity of solar production conditional on positive production (“Intensive Margin”) and

2) the partial elasticity of the probability of having positive installations (“Extensive

Margin”). Note that the intensive margin is what we estimate in our baseline regressions.

If the extensive margin term is relatively small relative to the intensive margin term, then

the partial elasticity of expected solar production, including tracts with zero production,

will be similar to the partial elasticity of production conditional on positive production

that we estimate in our main specification. Further, if the extensive margin term is

decreasing in income, then the partial elasticity of expected solar production will be more

strongly decreasing in income than the partial elasticity of production conditional on

positive production.

We first examine how the term ∂Pℓ

∂sℓ
varies across the income distribution. Again limiting

our sample to tracts within 40 miles of state borders, we run linear probability regressions

of the following form:

I(Kℓ > 0) = βExt
0 sℓ + βExt

1 sℓ × log Ŷℓ + x′
ℓγ

Ext + gExtθ (Locℓ) + εExtℓ , (21)

where I(Kℓ > 0) indicates that there is positive solar production in tract ℓ, Yℓ is “de-

medianed” average income in tract ℓ, sℓ is the generosity of subsidies available in tract ℓ,

and xℓ is a vector of controls. As before, we specify the gExtθ (Locℓ) functions as border-

specific polynomials. The main coefficients of interest are βExt
0 , which is our estimate of

∂Pℓ

∂sℓ
for tracts at the median income level, and βExt

1 , which determines how ∂Pℓ

∂sℓ
varies as a

function of income.

Table A8 reports parameter estimates from (21). Each column corresponds to a dif-

ferent specification, which vary in the degree of the polynomials in location relative to

the state border. Across all specifications, our estimates suggest that ∂Pℓ

∂sℓ
is decreasing in
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income and small in magnitude compared to our baseline partial elasticity estimates using

tracts with positive production.
Table A8: Effect of Subsidies on Pr of Any Installations

Border Polynomial Deg. 0 3 5

Bandwidth (mi) 40 mi 80 mi 40 mi 80 mi 40 mi 80 mi
Model: (1) (2) (3) (4) (5) (6)

Variables
Subsidy 0.880∗∗∗ 1.02∗∗∗ 1.34∗∗∗ 1.33∗∗∗ 1.46∗∗∗ 1.32∗∗∗

(0.155) (0.170) (0.273) (0.249) (0.219) (0.251)
Subsidy × Log Income -0.821∗∗∗ -0.978∗∗∗ -0.671∗∗∗ -0.864∗∗∗ -0.677∗∗∗ -0.842∗∗∗

(0.236) (0.253) (0.193) (0.228) (0.195) (0.224)

Fit statistics
Observations 29,308 44,209 29,308 44,209 29,308 44,209
R2 0.17 0.15 -189.9 0.17 -71.8 0.18

Clustered (State) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1
Estimates of coefficients from Equation (4). Sample is limited to tracts within either 40
or 80 miles bandwidths to state borders. All regressions include controls for tract-level
income, electricity prices, electricity prices interacted with income, solar irradiance,
population density and population density squared, a battery of tract-level demographic
measures, counts of other state-level solar policies, and border-specific polynomials in
location relative to border.

Similarly, the “Extensive Margin” panels of Figures A4, A6, and A7 show results for

various alternative specifications using an indicator for positive solar production as the

outcome. In each case, the results again suggest that ∂Pℓ

∂sℓ
is decreasing in income and small

in magnitude relative to our main results.

Next we examine how 1
Pℓ

varies across the income distribution. Let Pŷ denote the

fraction of tracts with positive solar production in income quintile ŷ. Figure A9 plots 1
Pŷ

over income quintiles. 1
Pŷ

is decreasing in income quintile, ranging from 1.6 in the first

income quintile to 1.15 in the top quintile.

Taken together, these results show that the extensive margin is small relative to the

intensive margin partial elasticity, and that the extensive margin partial elasticity is de-

creasing in income. This suggests that the partial elasticity of expected production, ac-

counting for tracts with zero production, is more strongly decreasing in income than our

baseline partial elasticity conditional on positive production.

19



Figure A9: Inverse of proportion of tracts with positive solar production over income quintiles.

C Structural Appendix

C.1 Derivation of Partial Elasticity of Installation with Respect

to Subsidies

The household value function conditional on installing solar panels is given by the La-

grangian

V m=1
i = max

ci,ai

T∑
t=1

βt−1 (cit)
1−γ

1− γ
+ ϕi −

T∑
t=1

µtgt (ait)−
T∑
t=1

λtht (cit, ait, ait+1)

where ci and ai are the vectors of household consumption levels and asset levels in all pe-

riods, gt (ait) denotes the borrowing inequality constraint in period t, and ht (cit, ait, ait+1)

denotes the budget equality constraint in period t.

Let V̄ m=1
i = V m=1

i −σϵi denote household i’s value of installing panels less the idiosyn-

cratic preference draw. Note that V̄ m=1
i is implicitly a function of subsidies. We can then

write the probability of installation as

logPi =

(
1

σ
V̄ m=1
i

)
− log

(
exp

(
1

σ
V̄ m=1
i

)
+ exp

(
1

σ

T∑
t=1

βt−1 (c
m=0
it )

1−γ

1− γ

))
.

Taking the derivative of logPi with respect to sUpfront yields

∂ logPi

∂sUpfront
=

1

σ

∂V̄ m=1
i

∂sUpfront
(1− Pi) . (22)
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Using the notation from above, the first year’s borrowing equality constraint is

ht (ci1, ai1, ai2) = ci1 + ai2 +mip
Ins
j (Ni)

−
(
yi − τ (yi) + (1 + r) ai1 +mi

(
NiAitpj + sUpfront

i

(
pInsj (Ni) , τ (yi)

)
+ sFlowi

(
pInsj (Ni) , Ait

)))
.

Therefore, the first-order condition of the Lagrangian with respect to c1 yields

(
cm=1
i1

)−γ
= λ1. (23)

Further, by the envelope theorem, we know what

∂V̄ m=1
i

∂sUpfront
=

∂V m=1
i

∂sUpfront
= λ1. (24)

Combining equations (22), (23), and (24) yields

∂ logP

∂sUpfront
=

(cm=1
i1 )

−γ

σ
(1− Pi) .

C.2 Additional Data and Estimation Details

Interest and Discount Rates We follow Sexton et al. (2021) and set a real interest

rate of 5% and assume panels have a life of 20 years. We also set T = 20. We assume

a household discount rate of β = 1
1+r

. De Groote and Verboven (2019), who estimate a

discount factor by estimating responses of residential solar demand to the introduction of

a generous subsidy for future solar production in Belgium. They find that households’

implicit real interest rate in evaluating future benefits greatly exceeds the real market

interest rate. We calculate optimal subsidies using a discount rate based on De Groote

and Verboven (2019) in Section 5.2.

Installation Size We parameterize the number of panels conditional on installation as

Ni = κXi, where κ is a vector of parameters to be estimated and Xi is a vector including a

constant term, household income, and tract-level college and democrat share. We estimate

the vector of parameters κ jointly with the other structural parameters.

Federal Income Taxes For the federal income tax function τ (yi), we utilize the func-

tional form used by Heathcote, Storesletten, and Violante (2017), which has been shown

to effectively replicate many features of the US income tax code.53 The functional form

53See e.g. Guner, Kaygusuz, and Ventura (2014).
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for the total tax burden is given by

τ (yi) = yi − λy1−τ
i ,

where τ is a parameter that dictates the progressivity of the tax schedule, and λ is a

parameter that dictates the overall level of taxes. We use the values of τ and λ estimated

by Guner, Kaygusuz, and Ventura (2014), who estimate these parameters using microdata

from the IRS. We use their estimates for all married households.

Subsidies We use data on subsidies Sexton et al. (2021), which are assembled from data

from the Database of State Incentives for Renewables & Efficiency (DSIRE). We assume

that upfront subsidies are given by the sum of subsidies from state and federal investment

tax credits and sales tax rebates. We assume that flow subsidies are given by the sum

of solar renewable energy certificates, other production-based subsidies, and property tax

rebates.

Formally, let sFed denote the portion of the Federal Investment Tax Credit that is

refundable in year 1. This refundable portion equals the minimum of the household’s tax

burden and 30% of the cost of installation. We can write this as

sFed = max
{
0,min

{
0.3pInsj (Ni) , τ (yi)

}}
.

Let sCost
j denote state cost-based subsidies—subsidies which pay a fraction of the cost

of installation, let SalesTaxRebatej be a dummy variable indicating state j offers a sales

tax exemption, and let SalesTaxRatej denote the average sales tax in state j. We can

write

sUpfront
i = pInsj (Ni)×

(
sCost
j + SalesTaxRebatej × SalesTaxRatej

)
+ sFed. (25)

Let sKwh
j denote the production-based subsidies, subsidies which pay per kWh of elec-

tricity produced, let PropTaxRebatej be a dummy variable indicating state j offers a

property tax exemption, and let PropTaxRatej denote the average property tax rate in

state j. Flow subsidies are given by

sFlowit = (1− δ)t−1 pInsj (Ni)× PropTaxRebatej × PropTaxRatej + sKwh
j NiAit

where δ is the depreciation rate of solar panels.

22



C.3 Construction of Tract-Level Income Distributions

We construct tract-level income distributions for homeowners in two steps. In the first

step, we construct tract-level income distributions for all households, including non-

homeowners, using tract-level data on average household income, Gini coefficient, and

number of households. In the second step, we estimate the joint distribution between

homeownership rates and income using household-level data from the 2015 ACS. We then

combine these estimates of homeownership rates with our tract-level income distributions

to construct tract-level income distributions for homeowners.

More specifically, in the first step, we assume household income in each tract follows

a log-normal distribution and choose the mean and variance of each tract’s income dis-

tribution to match the tract’s average income and Gini coefficient.54 This allows us to

construct the unconditional household income distribution for each tract in our data.

In the second step, we estimate the relationship between household income and the

probability that a household is a homeowner separately for each state. Letting Owni

denote that a given household i in the ACS owns their home, we regress

Owni = fs (yi) + εi

where yi is household i’s income, and fs (yi) is state-specific linear spline in household

income with knots at 10, 20, 30, 50, 75, 100, 150, and 200 thousand dollars. We then

take each household in the model’s predicted value from these regressions to calculate the

probability that they are a homeowner. This gives us the joint distribution of income and

homeownership.

Finally, we multiply the unconditional distribution of income across tracts uncondi-

tional distribution of income across tracts constructed in the first step with this home-

ownship probability to construct our tract-level income distributions conditional on home-

ownership.

C.4 Conditional Distribution of Initial Assets

We discretize the initial asset distribution into N = 20 mass points ranging from the

minimum asset level, ā, to ā+1, 000, 000. Our goal is to assign each household’s probability

distribution over these asset bins.

As in Sklar (1959), we can express the joint cumulative distribution function (CDF)

54Numerous studies find that the income distribution in the United States is approximately log-normal
(e.g., Battistin, Blundell, and Lewbel, 2009).)
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Estimate Standard Error
Dispersion of Idiosyncratic Utility σ 1.75 0.04
Curvature of Utility γ 0.42 0.02

Nonpecuniary Value of Installations
Constant ϕ0 -6.39 0.17
Percent College ϕColl 2.88 0.11
Percent Democrat ϕPol -1.61 0.19

Size of Installation Parameters
Constant κ0 15.45 0.05
Percent College κColl -2.28 0.32
Percent Democrat κPol -5.43 0.16
Demeaned Log Income κInc 0.96 0.16

Table A9: Parameter estimates. Bootstrap standard errors in parenthesis.

of assets a and income y as

F (a, y) = C (Fa(a), Fy(y))

where C is a copula, and Fa (Fy) is the CDF of assets (income). in our setting, Fy(y) is

equal to the national CDF of income given the tract-level income distributions we describe

in Appendix C.3.

For Fa we use the parametric distribution of assets estimated by Jäntti, Sierminska,

and Van Kerm (2015), who parameterize Fa(a) using the following piecewise function:

Fa(a) =


π1 exp (π3a) if a < 0

π1 + π2 if a = 0

π1 + π2 + (1− π1 − π2)

(
1−

[
1 +

(
w
π4

)π5
]−π6

)
if a > 0

, (26)

where the π’s are parameters.

For C we use the Plackett copula (Plackett, 1965). For both the parameteric asset

distribution Fa and the Plackett copula C, we use estimates from Jäntti, Sierminska, and

Van Kerm (2015), who estimate these parameters jointly using data from the Survey of

Consumer Finances.

C.5 Parameter Estimates

Table A9 shows the estimates of the structural parameters with bootstrapped standard

errors.
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Moment Data Simulation
I. Regression of log panels on subsidies and subsidies interacted
with log income, controlling for tract characteristics

Coefficient on subsidies 5.33 5.42
Coefficient on subsidies×log income -1.92 -1.94

II. Regression of panels per capita on demeaned log income
Coefficient on demeaned log income 0.25 0.24
Constant 0.21 0.21

III. Average panels per capita across income distribution
Income quintile 1 0.07 0.09
Income quintile 2 0.13 0.14
Income quintile 3 0.19 0.19
Income quintile 4 0.28 0.25
Income quintile 5 0.40 0.39

IV. Regression of average installation size on characteristics
Constant 15.73 15.72
Coefficient on college education -2.21 -2.19
Coefficient on democrat -5.57 -5.59
Coefficient on demeaned log income 0.64 0.73

V. Regression of panels per capita on percent college education
Coefficient on college education 0.17 0.50
Constant 0.22 0.21

VI. Regression of panels per capita on percent Democrat
Coefficient on democrat 0.06 0.01
Constant 0.22 0.22

Table A10: Model fit of targeted moments. The column “Data” gives the value of the moment in the
data, while “Simulated” gives the moment calculated in the estimated model.

C.6 Additional Model Fit

Table A10 presents the fit for targeted moments. The model overpredicts the relationship

between college share and installations and underpredicts the relationship between average

tract income and percent democrat but fits relatively well overall.

Figure A10 compares the simulated installations across the income distribution to the

distribution in RECS microdata, which is not targeted in estimation.

C.7 Comparison to Existing Literature

We further assess model validity by simulating natural experiments that design-based

papers on solar installation have studied.

Colas and Reynier (2024) estimate demand for solar panels using a border-discontinuity

approach that exploits variation in subsidies on either side of state borders. Their estimates

imply that a $1,000 increase in subsidies for solar panels leads to roughly an 9% increase
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Figure A10: Untargeted Moments: Comparison to RECS installation rates. The bars show the percent of
households in each income bin who have solar panels in the RECS microdata and the model simulation.
RECS has income data in 8 income categories. We combine categories such that the bins in the figure
roughly correspond to income quartiles in 2015.

in solar panel installations. Simulating a $1,000 increase in subsidies for solar panels in

our model leads to a 9.2% increase in installations in our model.

Hughes and Podolefsky (2015) study the effect of the California Solar Initiative re-

bates by exploiting variation in rebate rates across utility companies. They find that a

$470 increase in total rebate leads to a 10% increase in installations. We replicate this

experiment in our model by providing additional upfront subsidies of $470 to California

households. We find this leads to a 4.0% increase in installations in California.

Crago and Chernyakhovskiy (2017) estimate the responsiveness of solar installations

to rebates using panel data from the US Northeast and find that increasing rebates by

$1 per watt increases solar panel installations by 47%. We simulate providing the same

rebate in these 12 states and find that total installations increase by 40%.

Gillingham and Tsvetanov (2019) estimate the price elasticity of demand for solar

panel installations using data from Connecticut and an instrumental variable approach

that accounts for excess zeros and unobserved heterogeneity. They find a price elasticity

of demand evaluated at the mean installation price equal to -0.65. We simulate the effects

of increasing installation prices for households in Connecticut by $1000 and calculate the

implied elasticity. We find an elasticity of demand evaluated at the mean installation price

of -0.66.

C.8 Estimation of Marginal Damages of Electricity Production

by NERC Region

Let DIt denote total environmental damages from electricity production for all plants

located within interconnection I in a given hour t. Our estimating equation is given by
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DIt =
∑
R∈RI

βRLoadRt + αmh + εt,

where R indexes NERC regions, RI is the set of NERC regions in interconnection I,

LoadRt is total load in region R in hour t, and αmh are month-by-hour fixed effects. We

restrict our sample to 8 AM to 6 PM so that we only measure the marginal damages

associated with daytime energy production. The βR’s are the coefficients of interest and

measure the marginal damages associated with additional electricity load in region R.

We use data assembled by Holland et al. (2020), who use data on individual power plant

production and emissions levels from 2010-2017 from the EPA’s Continuous Emissions

Monitoring System. Damages are measured as the sum of environmental damages from

CO2 and local pollutant emissions. To measure damages associated with CO2 emissions,

the authors assume a social cost of carbon valued at $35.56 per metric ton of CO2 in 2010,

which grows at 3 percent annually. To measure environmental damages associated with

the emissions of local pollutants, the authors use the AP3 integrated assessment model,

which calculates the damages associated with individual pollutants at the plant level.

C.9 Additional Decomposition Results

Figure A11 repeats the decomposition exercise from Section 4.1 but displays installations

per household rather than installations per homeowner. Figure A12 repeats the decompo-

sition exercise from Section 4.1, except we do each modification to the model individually

rather than cumulatively. Again, the main conclusion is that borrowing constraints and

the nonrefundable Federal Investment Tax Credit play important roles in explaining the

strong positive relationship between installations and income.

Figure A13 plots the number of marginal installations across deciles of household

income under various model specifications. The solid red line shows the number of marginal

households in the baseline model. The number of marginal households is initially increasing

in income before decreasing. The remaining lines sequentially remove the influence of

prices, subsidies, and solar irradiance (black dashed line); make the Federal Investment

Tax Credit Refundable (blue dash-dotted line); remove borrowing constraints (cyan dashed

line); equalize preferences (solid magenta line); and equalize income (dotted green line).

C.10 Production-Maximizing Optimality Conditions

Let I denote the set of all households, let Pi|a denote the probability household i installs

panels conditional on having initial assets a, and let Pri (a) denote the probability house-
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Figure A11: Model-Based Decomposition: All Households. The graph shows the average number of
installations per household, including non-homeowners, across deciles of household income over various
model specifications. See text for details on each specification.

hold i has initial asset level a. The government’s problem is to maximize solar production∫
i∈I

∫
Pri (a)Pi|aNiAidadi

subject to the constraint that∫
i∈I

∫
Pri (a)Pi|asidadi ≤ C,

where C is the exogenously-set government budget, and si is the present discounted value

of subsidies received by household i conditional on installing solar panels. We can write

the government’s problem as the Lagrangian:

max

∫
i∈I

∫
Pri (a)Pi|aNiAidadi− λ

(∫
i∈I

∫
Pri (a)Pi|asidadi− C

)
,

where λ is the government’s Lagrange multiplier. Let sInc (ŷ) denote the income-contingent

subsidy for households with income level ŷ. Taking the first-order condition with respect

to sInc (ŷ) yields

∫
i∈I(ŷ)

∫
Pri (a)

∂Pi|a

∂sInc (ŷ)
NiAidadi−

λ

(∫
i∈I(ŷ)

∫
Pri (a)

∂Pi|a

∂sInc (ŷ)
sidadi+

∫
i∈I(ŷ)

∫
Pri (a)Pi|adadi

)
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(a) Remove Spatial Factors (b) Make FITC Refundable

(c) Remove Borrowing Constraints (d) Equality Preferences

(e) Equalize Income

Figure A12: Alternative model decomposition results.
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Figure A13: Model-Based Decomposition: Marginal Installations. The graph shows the average number
of marginal installations per home across deciles of household income over various model specifications.
See text for details on each specification.

where I (ŷ) is the set of households with income level ŷ.

Let M (ŷ) =
∫
i∈I(ŷ)

∫
Pri (a)Pi|adadi denote the total number installations by house-

holds with income level ŷ. We can then rewrite the government’s optimality condition

as
∂M (ŷ)

∂sInc (ŷ)
×

(
s̄ (ŷ)− 1

λ
NA (ŷ)

)
+M (ŷ) = 0.

The term ∂M(ŷ)
∂sInc(ŷ)

gives the derivative of installations of households with income level (ŷ).

These marginal installations increase government costs, as these households now receive

subsidies. This marginal cost is captured by s̄ (ŷ), which gives the average subsidy received

across all marginal households. This is formally given by

s̄ (ŷ) =

∫
i∈I

∫
Pri (a)

∂Pi|a
∂sInc(ŷ)

sidadi∫
i∈I

∫
Pri (a)

∂Pi|a
∂sInc(ŷ)

dadi
.

These marginal households are also associated with additional solar production. This is

captured by the term NA (ŷ), which gives the average solar output per installation for

these marginal households. This term is formally given by

NA (ŷ) =

∫
i∈I

∫
Pri (a)

∂Pi|a
∂sInc(ŷ)

NiAidadi∫
i∈I

∫
Pri (a)

∂Pi|a
∂sInc(ŷ)

dadi
.

Finally, households at income level ŷ who already choose to install panels given the current
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levels of subsidies would receive additional subsidies if the government increased sInc (ŷ).

The additional government cost associated with more generous subsidies for these infra-

marginal households is captured by the term M (ŷ).

C.11 Environmental-Benefit-Maximizing Subsidies

Optimality Conditions Let Bi denote the environmental benefits associated with one

kWh of solar electricity produced by household i. Let I denote the set of all households,

let Pi|a denote the probability household i installs panels conditional on having initial

assets a, and let Pri (a) denote the probability household i has initial asset level a. The

government’s problem is to maximize environmental benefits,∫
i∈I

∫
Pri (a)Pi|aNiAiBidadi

subject to the constraint that∫
i∈I

∫
Pri (a)Pi|asidadi ≤ C,

where C is the exogenously set government budget, and si is the present discount value

of subsidies received by household i conditional on installing solar panels.

Similar to Appendix C.10, we can then write government’s optimality condition as

∂M (ŷ)

∂sInc (ŷ)
×

(
s̄ (ŷ)− 1

λ
NAB (ŷ)

)
+M (ŷ) = 0.

The term ∂M(ŷ)
∂sInc(ŷ)

gives the derivative of installations for households with income level (ŷ).

The marginal cost associated with providing subsidies to these households is captured

by s̄ (ŷ), which gives the average subsidy received across all marginal households and is

formally given by

s̄ (ŷ) =

∫
i∈I

∫
Pri (a)

∂Pi|a
∂sInc(ŷ)

sidadi∫
i∈I

∫
Pri (a)

∂Pi|a
∂sInc(ŷ)

dadi
.

These marginal households are also associated with additional environmental benefits.

This is captured by the term NAB (ŷ), which gives the average environmental benefits

per installation for these marginal households. This term is formally given by

NAB (ŷ) =

∫
i∈I

∫
Pri (a)

∂Pi|a
∂sInc(ŷ)

NiAiBidadi∫
i∈I

∫
Pri (a)

∂Pi|a
∂sInc(ŷ)

dadi
.
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(1) (2) (3)
Prod Benefit

Baseline Max Max
I. Production per HH

Income Q1 22.1 46.1 44.0
Income Q2 50.4 64.3 64.2
Income Q3 77.0 76.5 77.8
Income Q4 119.0 91.5 92.0
Overall 68.7 70.4 70.4

II. Subsidy Generosity ($1000s)
Income Q1 8.1 12.4 12.2
Income Q2 9.3 11.5 11.5
Income Q3 9.8 9.8 10.0
Income Q4 10.4 6.2 6.2

III. Relative Production 100.0 102.4 102.4

IV. Relative Benefits 100.0 102.4 102.4

Table A11: Environmental-Benefit-Maximizing Subsidies. Panel I shows the average yearly solar capacity
in kWh per household in each income quartile. Panel II shows the average subsidy a household from each
income quartile would receive for a solar installation. Panel III shows the total solar production. We scale
total production under the baseline simulation to 100. Panel IV shows the total environmental benefits
of solar panels. We scale the environmental benefits under the baseline simulation to 100.

Finally, the additional government cost associated with more generous subsidies for these

inframarginal households is captured by the term M (ŷ).

Results To measure Bi, the marginal benefits associated with one kWh of solar elec-

tricity produced by household i, we estimate NERC-region level marginal damages of

electricity production using data from Holland et al. (2020). We describe this estimation

procedure in Appendix C.8.

Table A11 shows the results. Each column presents subsidy levels, installation rates,

total solar production, and total environmental benefits under a given subsidy scheme.

The first column presents these statistics under the current subsidy scheme, the second

column presents the production-maximizing subsidy scheme, and the third column presents

the environmental-benefits-maximizing subsidy scheme. The optimal subsidy schemes,

distribution of installations, production levels, and environmental benefits are very similar

for the production-maximizing and environmental-benefit-maximizing subsidy schemes.
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(a) Average Subsidy (b) Panels per Household

Figure A14: The figure on the left shows the average present discounted value of subsidies received for an
installation across income levels under various subsidy schemes. The figure on the right shows the average
panels per household across income levels under these same subsidy schemes.

C.12 Lower Installation Prices

Figure A14a shows the production-maximizing subsidy schedule given current installation

prices (dotted blue line), and production-maximizing subsidy schedule given that instal-

lation prices are 50% of current prices (black dashed line). The production-maximizing

subsidies with lower installation prices are still strongly decreasing in income but are lower

than optimal subsidies given current prices. With lower installation prices, subsidies per

household under the current subsidy scheme are lower than with current prices, because

the government pays less cost-based subsidies. Since the optimal subsidies are cost neutral,

optimal subsidies with lower prices are lower than optimal subsidies with current prices.

Figure A14b shows panels per households given current installation costs and the cor-

responding production-maximizing subsidies (dotted blue line), and panels per households

given 50% of current installation costs and the corresponding production-maximizing sub-

sidies (black dashed line). Decreasing installation costs leads to an increase in installation

rates across the board, but especially for low income households.

C.13 Cost-Minimizing Subsidies

Figure A16 shows the average present discounted value of subsidies received for an in-

stallation across income levels under production-maximizing, cost-minimizing and current

subsidy schemes. The cost-minimizing subsidy schedule is very similar to the production-

maximizing schedule.
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Figure A15: Average Subsidy
Figure A16: This figure shows the average present discounted value of subsidies received for an installation
across income levels under production-maximizing, cost-minimizing and current subsidy schemes
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C.14 Welfare-Maximizing Subsidies

Let Bi denote the environmental benefits associated with one kWh of solar electricity

produced by household i and let Vi|a denote the lifetime utility of household i conditional

on having initial assets a. The government’s problem is to maximize∫
i∈I

∫
Pri (a)Pi|aVi|adadi︸ ︷︷ ︸

Utilitarian Welfare

subject to the constraint that∫
i∈I

∫
Pri (a)Pi|asidadi︸ ︷︷ ︸
Fiscal Cost

−
∫
i∈I

∫
Pri (a)Pi|aNiAiBidadi︸ ︷︷ ︸
Environmental Benefit

≤ C,

where C is the exogenously set maximum net cost.

We can write the constrained welfare maximizing problem as the Lagrangian

maxW =

∫
i∈I

∫
Pri (a)Vi|adadi︸ ︷︷ ︸

Utilitarian Welfare

−

λ

∫
i∈I

∫
Pri (a)Pi|asidadi︸ ︷︷ ︸
Fiscal Cost

−
∫
i∈I

∫
Pri (a)Pi|aNiAiBidadi︸ ︷︷ ︸
Environmental Benefit

−C

 , (27)

where λ is the government’s Lagrange multiplier.

The system of optimal subsidies must satisfy the government’s first-order conditions,

which implies∫
i∈I

∫
Pri (a)

∂Vi|a

∂sInc (ŷ)
dadi−

λ

(∫
i∈I

∫
Pri (a)

(
∂Pi|a

∂sInc (ŷ)
(si −NiAiBi) + Pi|a

)
dadi

)
= 0. (28)

Again let M (ŷ) =
∫
i∈I(ŷ)

∫
Pri (a)Pi|adadi denote the total number installations by

households with income level ŷ. We can then rewrite the government’s optimality condition

as ∫
i∈I

∫
Pri (a)

∂Vi|a

∂sInc (ŷ)
dadi+ λ

(
∂M (ŷ)

∂sInc (ŷ)
×

(
NAB (ŷ)− s̄ (ŷ)

)
−M (ŷ)

)
= 0.
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The term ∂M(ŷ)
∂sInc(ŷ)

gives the derivative of installations of households with income level (ŷ).

These marginal installations lead to environmental benefits but also increase government

cost. This government cost is captured by s̄ (ŷ), which gives the average subsidy received

across all marginal households. This is formally given by

s̄ (ŷ) =

∫
i∈I

∫
Pri (a)

∂Pi|a
∂sInc(ŷ)

sidadi∫
i∈I

∫
Pri (a)

∂Pi|a
∂sInc(ŷ)

dadi
.

The increase in environmental benefits is given by NAB (ŷ), which gives the average

environmental benefits of marginal installations for income level ŷ. This is formally given

by

NAB (ŷ) =

∫
i∈I

∫
Pri (a)

∂Pi|a
∂sInc(ŷ)

NiAiBidadi∫
i∈I

∫
Pri (a)

∂Pi|a
∂sIncj (ŷ)

dadi
.

Using the envelope theorem, we know that

∂Vi|a

∂sIncj (ŷ)
= Pi|a

∂ui

∂ci1

(
cm=1
i1|a
)

where ∂ui

∂ci1

(
cm=1
i1|a

)
gives the marginal utility of consumption with respect to consumption

in year 1, evaluated at the optimal consumption level in year 1 conditional on installation

and having initial asset level a.

We can then write the government’s optimality condition in a similar form to that in

Colas, Findeisen, and Sachs (2021) as

∂M (ŷ)

∂sInc (ŷ)
×

(
NAB (ŷ)− s̄ (ŷ)

)
−M (ŷ)

(
1− W̄ (ŷ)

)
= 0,

where W̄ (ŷ) gives the money-metric average social welfare weights of households of income

group ŷ who install solar panels. This is formally given by

W̄ (ŷ) =
1

λ

∫
i∈I

∫
Pri (a)Pi|a

∂ui

∂ci1

(
cm=1
i1|a

)
dadi∫

i∈I

∫
Pri (a)Pi|adadi

.

Intuitively, this gives the average social welfare increase associated with an additional unit

of consumption for households who already choose to install solar panels.
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C.15 Stochastic Income Details

C.15.1 Model Details

Timing Households begin the model with an initial persistent component of income zi0.

At the beginning of the model, they receive their idiosyncratic preferences for panels, ϵi,

and make a once and for all decision of whether to install solar panels (mi ∈ {0, 1}).
After making this decision, households receive the persistent and transitory earnings

shocks, ηit, and εit. Households then make a consumption and savings decision, taking an

expectation over future earnings shocks. Each year, households continue to receive that

year’s two shocks and make consumption and earnings decisions.

Model Solution Let Vit (Ωit, ηit, εit) denote household i’s value function in period t,

conditional on state space Ωit, and earnings ηit, and εit. The state space consists of lagged

value of the persistent component, zit−1, assets ait, the amount of carried over federal tax

credits sCarry
i , value of electricity produced

(
miNiAi

(
pj + skwh

j

))
, and amount of property

tax rebate. Note that this value function can be used for both households who choose

to install solar panels and for those who do not by setting the appropriate state space

variables to 0.

After making the initial installation decision, the household’s value function is given

by

Vit (Ωit, ηit, εit) = max
cit

(cit)
1−γ

1− γ
+ βE [Vit+1 (Ωit+1, ηit+1, εit+1|cit)]

subject to the budget constraint ((7) and (8)) and the borrowing constraint (9). The

expectation is taken over ηit+1 and εit+1.

Let Ωm=0
i1 denote the individual’s state space in year 1 conditional on not installing

solar panels, and let Ωm=1
i1 denote the state space conditional on installing solar panels.

The household chooses to install solar panels if

E
[
Vit

(
Ωm=1

i1 , ηi1, εi1
)]

+ ϕi ≥ E
[
Vit

(
Ωm=0

i1 , ηi1, εi1
)]

.

Given that ϵi has a logit distribution, the probability household i installs solar panels is

given by

Pi =
exp

(
1
σ
E [Vit (Ω

m=1
i1 , ηi1, εi1)] + ϕ̄i

)
exp

(
1
σ
E [Vit (Ωm=1

i1 , ηi1, εi1)] + ϕ̄i

)
+ exp

(
1
σ
E [Vit (Ωm=0

i1 , ηi1, εi1)]
) .

Calibration We set ση = 0.022, σε = 0.057, and ρ = 0.984, based on the estimates

from Panel B of Table 1 from Storesletten, Telmer, and Yaron (2004). We assume the
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Estimate
Dispersion of Idiosyncratic Utility σ 1.83
Curvature of Utility γ 0.43

Nonpecuniary Value of Installations
Constant ϕ0 -6.34
Percent College ϕColl 2.58
Percent Democrat ϕPol -1.64

Size of Installation Parameters
Constant κ0 15.40
Percent College κColl -2.23
Percent Democrat κPol -5.47
Demeaned Log Income κInc 0.98

Table A12: Parameter estimates for model with stochastic income

initial value of the persistent component of earnings, zi0, follows a normal distribution with

tract-specific means and variances such that income in year 1 also follows a log-normal

distribution. We choose the tract-specific means and variances of zi0 such that the income

distribution in year t = 1 matches tract-level average income and Gini coefficients.

We assume that the income-contingent subsidies are awarded based on a household’s

income in year t = 0. We assume there is no transitory income shock in year 0 such that

log yi0 = zi0.

C.15.2 Results

Table A12 presents the parameter estimates for the model with stochastic income. The

parameter estimates are similar to the baseline estimates.

Figure A17 shows model fit. The first panel shows panels per household across per-

centiles of tract-level income in the model and data. The red line shows the panels per

household in the data while the black dashed line shows the simulated panels from the

estimated model. The second panel shows partial elasticities across income levels in the

model and data. These are estimated using the same set of controls as Figure 5.

Table A13 has the main results with stochastic income. The optimal subsidy schemes,

distribution of installations, and production levels are similar to those under the baseline

model.

C.16 Upfront Vs. Flow Subsidies

We now compare the efficacy of upfront and flow subsidies at inducing installations across

the income distribution. We first simulate an income-neutral increase in upfront subsidies,

denoted by ∆sUpfront. We then simulate an income-neutral increase in flow subsidies

denoted by ∆sFlow. For the sake of comparison, we choose both ∆sUpfront and ∆sFlow
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(a) Income (b) Partial Elasticity

Figure A17: Model Fit: Stochastic Income. Panel (a) shows panels per household across percentiles of
tract-level income in the model and data. The red line shows the panels per household in the data, while
the black dashed line shows the simulated panels from the estimated model. These are estimated using
the same set of controls as Figure 5.

(1) (2) (3)
Prod Utility

Baseline Max Max
I. Production per HH

Income Q1 18.4 37.0 52.4
Income Q2 48.6 66.0 64.9
Income Q3 78.6 80.5 74.2
Income Q4 123.8 95.3 85.6
Overall 69.1 70.8 69.8

II. Subsidy Generosity ($1000s)
Income Q1 8.1 12.0 14.1
Income Q2 9.3 11.6 11.5
Income Q3 9.8 10.0 9.2
Income Q4 10.4 6.6 5.2

III. Relative Production 100.0 102.3 100.9

Table A13: Results: Stochastic Income. Panel I shows the average yearly solar capacity in kWh per
household in each income quartile. Panel II shows the average subsidy a household from each income
quartile would receive for a solar installation. Panel III shows the total solar production. We scale total
production under the baseline simulation to 100.
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Figure A18: Upfront vs. Flow Subsidies. The lines show the percentage change in installations across
income deciles associated with increasing upfront subsidies (red line) and flow subsidies (black dotted
line). Both subsidy increases lead to a 10% increase in fiscal costs.

such that the change in fiscal cost associated with each subsidy increase is equal to a 10%

increase in total fiscal costs.

The results are shown in Figure A18. The solid red line shows the percent change in

installations across the income distribution associated with increasing upfront subsidies

by ∆sUpfront. Consistent with our other results, we find that the upfront subsidy increase

leads to a much larger increase in installations for lower-income households.

The black dotted line shows the effect of increasing flow subsidies by ∆sFlow. The

increase in installations is significantly muted at the bottom of the income distribution.

This occurs because, unlike upfront subsidies, flow subsidies do little to alleviate short-

term liquidity constraints for low-income households. Altogether, these results suggest

that upfront subsidies are both more cost-effective overall and more effective at increasing

installations for low-income households than flow subsidies.
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